Analysis of the Dynamic Characteristics of Coaxial Counter-Rotating Planetary Transmission System
Abstract
:1. Introduction
2. Composition of the Transmission System
3. Dynamic Model of the Transmission System
3.1. Dynamic Model
3.2. Calculation of Component Relative Displacements
3.2.1. Relative Displacements between Sun gear and Planet gears
3.2.2. Relative Displacements between the Ring gear and Planet Gears
3.2.3. Relative Displacements between the Carrier and Planet Gears
3.3. Derivation of the Motion Differential Equations
3.3.1. Motion Differential Equation for the Sun Gear, a
3.3.2. Motion Differential Equation for the Planet Gear, mi
3.3.3. Motion Differential Equation for the Ring Gear, d
3.3.4. Motion Differential Equation for the Sun Gear s
3.3.5. Motion Differential Equation for the Planet Gear pi
3.3.6. Motion Differential Equation for the Ring Gear r
3.3.7. Motion Differential Equation for the Carrier, h
3.4. The Definition of LSC
4. Analysis of Dynamic Response Characteristics of the Transmission System
4.1. Dynamic Meshing Forces
4.1.1. Dynamic Meshing Forces under Rated Condition
4.1.2. Effect of External Excitation on Dynamic Meshing Forces
4.2. Analysis of Planet Gear Vibration Displacements
4.2.1. Vibration Displacements of the Planet Gears under Rated Condition
4.2.2. Vibration Displacements of Planet gears under Different Input Torques
4.3. Load-Sharing Coefficients
4.3.1. LSCs under Rated Condition
4.3.2. Dynamic LSCs under External Excitation
4.3.3. Dynamic LSCs under Different Input Torques
5. Model Validation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boguski, B.; Kahraman, A. An experimental study on the motion transmission error of planetary gear sets. Comput. Methods. Appl. Mech. Engrg. 2015, 283, 956–970. [Google Scholar]
- Shen, Z.; Qiao, B.; Yang, L.; Luo, W.; Yang, Z.; Chen, X. Fault mechanism and dynamic modeling of planetary gear with gear wear. Mech. Mach. Theory 2021, 155, 104098. [Google Scholar] [CrossRef]
- Xu, H.; Ren, H.; Qin, D. Dynamic characteristics of the planetary gear system with rolling bearing. Multibody Syst. Dyn. 2023, 59, 171–191. [Google Scholar] [CrossRef]
- Gu, X.; Velex, P. A dynamic model to study the influence of planet position errors in planetary gears. J. Sound Vib. 2012, 331, 4554–4574. [Google Scholar] [CrossRef]
- Gu, X.; Velex, P. On the dynamic simulation of eccentricity errors in planetary gears. Mech. Mach. Theory 2013, 61, 14–29. [Google Scholar] [CrossRef]
- Guo, Y.; Keller, J.; Parker, R.G. Nonlinear dynamics and stability of wind turbine planetary gear sets under gravity effects. Eur. J. Mech. A/Solids. 2014, 47, 45–57. [Google Scholar] [CrossRef]
- Huangfu, Y.F.; Dong, X.J.; Chen, K.K.; Li, Z.; Peng, Z. An insight into the pass effect of the planet gear from an elastodynamics perspective. Sci. China Technol. Sci. 2023, 66, 2415–2431. [Google Scholar] [CrossRef]
- Han, H.; Ma, H.; Tian, H.; Peng, Z.; Zhu, J.; Li, Z. Sideband analysis of cracked planetary gear train considering output shaft radial assembly error. Mech. Syst. Signal Process 2023, 200, 110618. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, Y.; Xu, H. Effects of multi-excitation on vibration characteristics of planetary gear system. Alex. Eng. J. 2022, 61, 10593–10602. [Google Scholar] [CrossRef]
- Liu, C.; Yang, C.; Zhao, Y.; Luo, J.; Chen, X. Dynamic modeling and analysis of high-speed flexible planetary gear transmission systems. Alex. Eng. J. 2023, 80, 444–464. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Xia, M. A dynamic model for the planetary bearings in a double planetary gear set. Mech. Syst. Signal Process 2023, 194, 110257. [Google Scholar] [CrossRef]
- Fyler, D.C.; Inalpolat, M. A dynamic model for double-planet planetary gearsets. J. Vib. Acoust. 2016, 138, 021006. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, J.; Yu, H. Robust optimisation of dynamic and NVH characteristics for compound power-split hybrid transmission. Proc. Inst. Mech. Eng. K J. Multi-Body Dyn. 2019, 233, 817–826. [Google Scholar] [CrossRef]
- Tung, L.C.; Chan, Y.J. A time-variant dynamic model for compound epicyclic–cycloidal reducers. Mech. Mach. Theory 2023, 179, 105095. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, X. A dynamic tooth wear prediction model for reflecting “two-sides” coupling relation between tooth wear accumulation and load sharing behavior in compound planetary gear set. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2020, 234, 1746–1763. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, B.; Gong, J.; Qin, M.; Liu, G. Dynamic modelling and vibration characteristics of a marine compound gear transmission system. Proc. Inst. Mech. Eng. K J. Multi-Body Dyn. 2023, 237, 261–278. [Google Scholar] [CrossRef]
- Li, W.; Li, Z. Dynamic analysis of a multi-stage gear system considering the coupling between mesh phasing angle and coaxial teeth ratio. Nonlinear Dyn. 2023, 111, 19855–19878. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, R.; Fu, B.; Tan, W. Modal properties of contra-rotating encased differential gear train used in coaxial helicopter. J. Vib. Eng. Technol. 2020, 8, 799–814. [Google Scholar] [CrossRef]
- Ryali, L.; Talbot, D. A dynamic gear load distribution model for epicyclic gear sets with a structurally compliant planet carrier. Mech. Mach. Theory 2023, 181, 105225. [Google Scholar] [CrossRef]
- Lai, J.; Liu, Y.; Xu, X.; Li, H.; Xu, J.; Wang, S.; Guo, W. Dynamic modeling and analysis of Ravigneaux planetary gear set with unloaded floating ring gear. Mech. Mach. Theory 2022, 170, 104696. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, Y.; Ren, J.; Yu, S. Dynamic characteristics of the ring gear structure of two-stage plastic planetary reducers. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 474. [Google Scholar] [CrossRef]
- Cui, T.; Li, Y.; Zan, C.; Chen, Y. Dynamic modeling and analysis of nonlinear compound planetary system. Machines 2022, 10, 31. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, H.; Yu, H.; Zhang, T. Numerical and experimental investigation on nonlinear dynamic characteristics of planetary gear train. J. Theor. Appl. Mech. 2020, 58, 1009–1022. [Google Scholar] [CrossRef]
- Peneva, M.; Radkova, K.; Troha, S.; Karaivanov, D. On the using of two-carrier planetary gear trains with two compound and four external shafts as change-gears. MATEC Web Conf. 2022, 366, 01007. [Google Scholar] [CrossRef]
- Shuai, M.; Ting, Z.; Guo-Guang, J.; Xiao-Lin, C.; Han-Jun, G. Analytical investigation on load sharing characteristics of herringbone planetary gear train with flexible support and floating sun gear. Mech. Mach. Theory 2020, 144, 103670. [Google Scholar] [CrossRef]
Item | Number of Teeth | Angle of Helix (°) | Normal Pressure Angle (°) | Module | Mass (kg) | Moment of Inertia (kg·mm2) |
---|---|---|---|---|---|---|
Sun gear, a | 22 | 20 | 20 | 1.5 | 0.092 | 17.664 |
Planet gear, m | 44 | 20 | 20 | 1.5 | 0.327 | 268.521 |
Ring gear, dL | 110 | 20 | 20 | 1.5 | 0.163 | 1325.860 |
Ring gear, dR | 110 | 20 | 20 | 1.5 | 0.163 | 1325.860 |
Sun gear, s | 55 | 20 | 20 | 1.5 | 0.488 | 525.752 |
Planet gear, p | 27 | 20 | 20 | 1.5 | 0.108 | 35.531 |
Ring gear, rL | 110 | 20 | 20 | 1.5 | 0.163 | 1325.860 |
Ring gear, rR | 110 | 20 | 20 | 1.5 | 0.163 | 1325.860 |
Planet carrier, h | 1.648 | 4946.014 |
Torque (Nm) | Speed (rpm) | |
---|---|---|
Case 1 | 200 | 11,938 |
Case 2 | 300 | 7958 |
Case 3 | 400 | 5968 |
Case 4 | 500 | 4775 |
Case 5 | 600 | 3979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Z.; Chen, Z.; Qu, J.; Li, Y.; Dzianis, M.; Mo, S.; Yu, G. Analysis of the Dynamic Characteristics of Coaxial Counter-Rotating Planetary Transmission System. Appl. Sci. 2024, 14, 4491. https://doi.org/10.3390/app14114491
Yue Z, Chen Z, Qu J, Li Y, Dzianis M, Mo S, Yu G. Analysis of the Dynamic Characteristics of Coaxial Counter-Rotating Planetary Transmission System. Applied Sciences. 2024; 14(11):4491. https://doi.org/10.3390/app14114491
Chicago/Turabian StyleYue, Zongxiang, Zhaobo Chen, Jianjun Qu, Yang Li, Marmysh Dzianis, Shuai Mo, and Guangbin Yu. 2024. "Analysis of the Dynamic Characteristics of Coaxial Counter-Rotating Planetary Transmission System" Applied Sciences 14, no. 11: 4491. https://doi.org/10.3390/app14114491
APA StyleYue, Z., Chen, Z., Qu, J., Li, Y., Dzianis, M., Mo, S., & Yu, G. (2024). Analysis of the Dynamic Characteristics of Coaxial Counter-Rotating Planetary Transmission System. Applied Sciences, 14(11), 4491. https://doi.org/10.3390/app14114491