Flow Velocity Computation in Solid–Liquid Two-Phase Flow by a Hybrid Network CNN–RKSVM
Abstract
:1. Introduction
2. Related Work
2.1. Cross-Correlation Principle
2.2. Convolutional Neural Network
2.3. Reproducing Kernel Function
2.4. Reproducing Kernel-Based Support Vector Machine
3. The Hybrid Network for Flow Velocity Computation
3.1. Structure of Hybrid Network
3.2. Training of CNN–RKSVM
3.3. The Sample Dataset
4. Experimental Results and Discussion
4.1. Evaluation Parameters
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriguez-Frias, M.A.; Yang, W. Dual-Modality 4-Terminal Electrical Capacitance and Resistance Tomography for Multiphase Flow Monitoring. IEEE Sens. J. 2020, 20, 3217–3225. [Google Scholar] [CrossRef]
- Saoud, A.; Mosorov, V.; Grudzien, K. Measurement of velocity of gas/solid swirl flow using Electrical Capacitance Tomography and cross correlation technique. Flow Meas. Instrum. 2016, 53, 133–140. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Fu, R.; Wang, D.; Chen, X.; Guo, X.; Wang, H. V-Shaped Dense Denoising Convolutional Neural Network for Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2022, 71, 4503014. [Google Scholar] [CrossRef]
- Kłosowski, G.; Rymarczyk, T.; Niderla, K.; Kulisz, M.; Skowron, L.; Soleimani, M. Using an LSTM network to monitor industrial reactors using electrical capacitance and impedance tomography—A hybrid approach. Eksploat. Niezawodn.—Maint. Reliab. 2023, 25, 1–11. [Google Scholar]
- Chhun, K.T.; Woo, S.I.; Yune, C.Y. Inversion of 2D cross-hole electrical resistivity tomography data using artificial neural network. Sci. Progress 2022, 105, 00368504221075465. [Google Scholar] [CrossRef] [PubMed]
- He, Y.C.; Wang, H.X.; Zhang, L.F.; Cui, Z.Q. Cross-correlation velocity measurement of gas-liquid two-phase flow based on void fraction. Transducer Microsyst. Technol. 2009, 28, 103–105. [Google Scholar]
- Shi, Y.; Wu, Y.; Wang, M.; Tian, Z.; Fu, F. Intracerebral Hemorrhage Imaging Based on Hybrid Deep Learning with Electrical Impedance Tomography. IEEE Trans. Instrum. Meas. 2023, 72, 4504612. [Google Scholar] [CrossRef]
- Hiskiawan, P.; Chen, C.C.; Ye, Z.K. Processing of electrical resistivity tomography data using convolutional neural network in ERT-NET architectures. Arab. J. Geosci. 2023, 16, 581–588. [Google Scholar] [CrossRef]
- Choi, J.S.; Kim, E.S.; Seong, J.H. Deep learning-based spatial refinement method for robust high-resolution PIV analysis. Exp. Fluids 2023, 64, 45. [Google Scholar] [CrossRef]
- Pham, M.V.; Kim, Y.T. Debris flow detection and velocity estimation using deep convolutional neural network and image processing. Landslides 2022, 19, 2473–2488. [Google Scholar] [CrossRef]
- Choi, D.; Kim, H.; Park, H. Bubble velocimetry using the conventional and CNN-based optical flow algorithms. Sci. Rep. 2022, 12, 11879–11885. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Z. Flow velocity prediction method based on deep learning. In Proceedings of the 7th International Conference on Traffic Engineering and Transportation System (ICTETS 2023), Dalian, China, 22–24 September 2023; Proceedings of SPIE. SPIE: Bellingham, WA, USA, 2024; Volume 13064. 130640P. [Google Scholar]
- Seo, J.; Yoon, H.; Kim, M. Establishment of CNN and encoder–decoder models for the prediction of characteristics of flow and heat transfer around NACA sections. Energies 2022, 15, 9204–9211. [Google Scholar] [CrossRef]
- Li, J.; Hu, D.; Chen, W.; Li, Y.; Zhang, M.; Peng, L. CNN-based volume flow rate prediction of oil-gas-water three-phase intermittent flow from multiple sensors. Sensors 2021, 21, 1245. [Google Scholar] [CrossRef]
- Liu, N.; Yue, S.; Wang, Y. Flow Velocity Computation in Solid-liquid Two-phase Flow by Convolutional Neural Network. In Proceedings of the 2023 IEEE International Instrumentation and Measurement Technology Conference, Kuala Lumpur, Malaysia, 22–25 May 2023; pp. 111–116. [Google Scholar]
- Zhao, Y.; Yue, S.; Li, K. Comparison of Flow Velocity Measurement Methods Based on ERT in Dredging Engineering. In Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference, Ottawa, ON, Canada, 16–19 May 2022; pp. 174–180. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Deng, X.; Dong, F.; Xu, L.J.; Liu, X.P.; Xu, L.A. The design of a dual-plane ERT system for cross correlation measurement of bubbly gas/liquid pipe flow. Meas. Sci. Technol. 2001, 12, 1024–1031. [Google Scholar] [CrossRef]
- Santos, F.R.; Brito, A.A.; de Castro, A.P.N.; Almeida, M.P.; da Cunha Lima, A.T.; Zebende, G.F.; da Cunha Lima, I.C. Detection of the persistency of the blockages symmetry influence on the multi-scale cross-correlations of the velocity fields in internal turbulent flows in pipelines. Phys. A Stat. Mech. Appl. 2018, 509, 294–301. [Google Scholar] [CrossRef]
- Tan, Y.; Yue, S.; Cui, Z.; Wang, H. Measurement of Flow Velocity Using Electrical Resistance Tomography and Cross-Correlation Technique. IEEE Sens. J. 2021, 21, 20714–20720. [Google Scholar] [CrossRef]
- Li, X.; Lu, R.; Wang, Q.; Wang, J.; Duan, X.; Sun, Y.; Li, X.; Zhou, Y. One-dimensional convolutional neural network (1D-CNN) image reconstruction for electrical impedance tomography. Rev. Sci. Instrum. 2020, 91, 124704. [Google Scholar] [CrossRef]
- Aronszajn, N. Theory of Reproducing Kernels. Transit. Am. Math. Soc. 1950, 68, 337–404. [Google Scholar] [CrossRef]
- Narayanan, G.; Joshi, M.; Dutta, P.; Kalita, K. PSO-tuned support vector machine metamodels for assessment of turbulent flows in pipe bends. Eng. Comput. 2019, 37, 981–1001. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Van Gestel, T.; De Brabanter, J.; De Moor, B.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific Publishing Co., Pte., Ltd.: Singapore, 2002. [Google Scholar]
- Zhong, K.; Teng, S.; Liu, G.; Chen, G.; Cui, F. Structural Damage Features Extracted by Convolutional Neural Networks from Mode Shapes. Appl. Sci. 2020, 10, 4247. [Google Scholar] [CrossRef]
- Chi, P.; Zhang, Z.; Liang, R. A CNN recognition method for early stage of 10 kV single core cable based on sheath current. Electr. Power Syst. Res. 2020, 184, 106292. [Google Scholar] [CrossRef]
Type | Kernel Size | Step Size | Output Dimension |
---|---|---|---|
Input | —— | —— | 240 × 1 × 1 |
Conv1 | 7×1 | 1 | 240 × 1 × 16 |
Conv2 | 5×1 | 1 | 240 × 1 × 32 |
Pool1 | 2×1 | 2 | 120 × 1 × 32 |
Conv3 | 3×1 | 1 | 120 × 1 × 32 |
Conv4 | 3×1 | 1 | 120 × 1 × 48 |
Pool2 | 2×1 | 2 | 60 × 1 × 48 |
Conv5 | 3×1 | 1 | 60 × 1 × 64 |
FC1 | —— | —— | 1024 × 1 × 1 |
FC2 | —— | —— | 10 × 1 × 1 |
Solid Phase | Sample Dataset | ||
---|---|---|---|
Training Dataset | Test Dataset | Total | |
Coarse sand | 9360 | 1040 | 10,400 |
Gravel | 6840 | 760 | 7600 |
Total | 16,200 | 1800 | 18,000 |
V | V < V0 | V > V0 | ||||||
---|---|---|---|---|---|---|---|---|
Method | CC | RKSVM | CNN | CNN–RKSVM | CC | RKSVM | CNN | CNN–RKSVM |
RMSE | 0.883 | 0.395 | 0.340 | 0.319 | 0.952 | 0.362 | 0.328 | 0.281 |
MAPE | 0.252 | 0.152 | 0.136 | 0.124 | 0.265 | 0.182 | 0.151 | 0.135 |
Runtime(s) | 0.007 | 0.564 | 0.295 | 0.903 | 0.006 | 0.529 | 0.312 | 0.835 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Yue, S.; Liu, L. Flow Velocity Computation in Solid–Liquid Two-Phase Flow by a Hybrid Network CNN–RKSVM. Appl. Sci. 2024, 14, 4611. https://doi.org/10.3390/app14114611
Li K, Yue S, Liu L. Flow Velocity Computation in Solid–Liquid Two-Phase Flow by a Hybrid Network CNN–RKSVM. Applied Sciences. 2024; 14(11):4611. https://doi.org/10.3390/app14114611
Chicago/Turabian StyleLi, Kun, Shihong Yue, and Liping Liu. 2024. "Flow Velocity Computation in Solid–Liquid Two-Phase Flow by a Hybrid Network CNN–RKSVM" Applied Sciences 14, no. 11: 4611. https://doi.org/10.3390/app14114611
APA StyleLi, K., Yue, S., & Liu, L. (2024). Flow Velocity Computation in Solid–Liquid Two-Phase Flow by a Hybrid Network CNN–RKSVM. Applied Sciences, 14(11), 4611. https://doi.org/10.3390/app14114611