Comparative Analysis of the Numerical Simulation and Measured Data of an Existing Tunnel Subjected to Multiple Disturbances: A Case Study
Abstract
:1. Introduction
2. Project Background
2.1. Project Overview
2.2. Geology and Soil Parameters
3. Midas GTS Simulation Process and Results
3.1. Geometric Model
3.2. Constitutive Model
3.3. Load and Constraint
3.3.1. Construction Load
3.3.2. Boundary Constraint
3.3.3. Interface Unit
3.3.4. Self-Weighted Load
3.4. Construction Process Simulation
3.5. Numerical Simulation Insights
3.5.1. Vertical Displacement
3.5.2. Horizontal Displacement
4. Analysis of the Field Measurement Data
4.1. Automatic Monitoring Arrangement and Monitoring Content
4.2. Actual Construction Process
4.3. Analysis of the Monitoring Data
4.3.1. Vertical Displacement
4.3.2. Horizontal Displacement
5. Comparison of Numerical Simulation Results to Measured Data
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharafat, A.; Latif, K.; Seo, J. Risk analysis of TBM tunneling projects based on generic bow-tie risk analysis approach in difficult ground conditions. Tunn. Undergr. Space Technol. 2021, 111, 103860. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, X.; Zhang, Z. Influences of tunnelling parameters in tunnel boring machine on stress and displacement characteristics of surrounding rocks. Tunn. Undergr. Space Technol. 2023, 137, 105129. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, Y.; Shen, Q.; Yang, L.; Cai, H. Risk assessment and management via multi-source information fusion for undersea tunnel construction. Autom. Constr. 2020, 111, 103050. [Google Scholar] [CrossRef]
- Wang, F.-W.; Feng, A.-J. Statistics and development analysis of urban rail transit in China in 2022. Tunn. Constr. 2023, 43, 521–528. [Google Scholar]
- Zhou, S.-H. Underground Shield Tunneling Project; Science Press: Beijing, China, 2017; ISBN 9787030546975. [Google Scholar]
- Wang, L.-X.; Liang, R.-Z.; Li, Z.-C.; Kang, C.; Xiao, M.-Z.; Wu, W.-B.; Gao, K.; Guo, Y. Heave deformation of existing shield tunnel induced by over-crossing excavation. Eng. Mech. 2022, 39, 130–140. [Google Scholar]
- Liu, B.; Yua, Z.-W.; Han, Y.-H.; Wang, Z.-L.; Zhang, R.-H.; Wang, S.-J. Analytical solution for the response of an existing tunnel induced by abovecrossing shield tunneling. Comput. Geotech. 2020, 124, 1–15. [Google Scholar] [CrossRef]
- Bousbia, N.; Messast, S. Numerical modeling of two parallel tunnels interaction using three-dimensional Finite Elements Method. Geomech. Eng. 2015, 9, 775–791. [Google Scholar]
- Hu, M.-Y. The Effect of Excavation Unloading on the Deformation of Existing Underlying Shield Tunnel. In Proceedings of the 4th International Conference on Transportation Geotechnics, Chicago, IL, USA, 23–26 May 2021. [Google Scholar]
- Chen, R.-P.; Meng, F.-Y.; Li, Z.-C.; Ye, Y.-H.; Ye, J.-N. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils. Tunn. Undergr. Space Technol. 2016, 58, 224–235. [Google Scholar] [CrossRef]
- Chang, C.-T.; Sun, C.-W.; Duann, S.; Hwang, R.N. Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation. Tunn. Undergr. Space Technol. 2001, 16, 151–158. [Google Scholar] [CrossRef]
- Chang, C.-T.; Wang, M.-J.; Chang, C.-T.; Sun, C.-W. Repair of displaced shield tunnel of the Taipei rapid transit system. Tunn. Undergr. Space Technol. 2001, 16, 167–173. [Google Scholar] [CrossRef]
- Xin, W.; Pang, C.-R. Influence of foundation pit excavation on existing shield tunnel and its protection range. Appl. Mech. Mater. 2014, 580–583, 1258–1263. [Google Scholar]
- Yong, T.; Ye, L.; Wang, D. Practical Solutions for Concurrent Excavation of Neighboring Mega Basements Closely Surrounded by Utility Tunnels in Shanghai Hongqiao CBD. Pract. Period. Struct. Des. Constr. 2019, 24, 05019005. [Google Scholar]
- Meng, F.-Y.; Chen, R.-P.; Wu, H.-N.; Xie, S.-W.; Liu, Y. Observed Behaviors of a Long and Deep Excavation and Collinear Underlying Tunnels in Shenzhen Granite Residual Soil. Tunn. Undergr. Space Technol. 2020, 103, 103504. [Google Scholar] [CrossRef]
- Zheng, G.; Yang, X.; Zhou, H.; Du, Y.; Sun, J.; Yu, X. A simplified prediction method for evaluating tunnel displacement induced by laterally adjacent excavations. Comput. Geotech. 2018, 95, 119–128. [Google Scholar] [CrossRef]
- Ng, C.; Sun, H.; Lei, G.; Shi, J.; Mašín, D. Ability of three different soil constitutive models to predict a tunnel’s response to basement excavation. Can. Geotech. J. 2015, 52, 1685–1698. [Google Scholar] [CrossRef]
- Zheng, G.; Wei, S.-W. Numerical analyses of influence of overlying pit excavation on existing tunnels. J. Cent. South Univ. Technol. 2008, 15, 069–075. [Google Scholar] [CrossRef]
- Li, M.-G.; Chen, J.-J.; Wang, J.-H.; Zhu, Y.-F. Comparative study of construction methods for deep excavations above shield tunnels. Tunn. Undergr. Space Technol. 2018, 71, 329–339. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Shi, J.; Mašín, D.; Sun, H.; Lei, G.H. Influence of sand density and retaining wall stiffness on three-dimensional responses of tunnel to basement excavation. Can. Geotech. J. 2015, 52, 1811–1829. [Google Scholar] [CrossRef]
- Meng, F.; Chen, R.; Liu, S.; Wu, H. Centrifuge Modeling of Ground and Tunnel Responses to Nearby Excavation in Soft Clay. J. Geotech. Geoenviron. Eng. 2021, 147, 04020178. [Google Scholar] [CrossRef]
- Meng, F.; Chen, R.; Xu, Y.; Wu, H.; Li, Z. Centrifuge Modeling of Effectiveness of Protective Measures on Existing Tunnel Subjected to Nearby Excavation. Tunn. Undergr. Space Technol. 2021, 112, 103880. [Google Scholar] [CrossRef]
- Zhang, J.-F.; Chen, J.-J.; Wang, J.-H.; Zhu, Y.-F. Prediction of tunnel displacement induced by adjacent excavation in soft soil. Tunn. Undergr. Space Technol. 2013, 36, 24–33. [Google Scholar] [CrossRef]
- Liang, R.; Wu, W.; Yu, F.; Jiang, G.; Liu, J. Simplified method for evaluating shield tunnel deformation due to adjacent excavation. Tunn. Undergr. Space Technol. 2018, 71, 94–105. [Google Scholar] [CrossRef]
- Wei, G. Measurement and analysis of impact of foundation pit excavation on below existed shield tunnels. Rock Soil Mech. 2013, 34, 1421–1428. [Google Scholar]
- Yong, T.; Li, X.; Kang, Z.; Liu, J.; Zhu, Y. Zoned Excavation of an Oversized Pit Close to an Existing Metro Line in Stiff Clay: Case Study. J. Perform. Constr. Facil. 2015, 29, 04014158. [Google Scholar]
- Huang, X.; Huang, H.-W.; Zhang, D.-M. Centrifuge modelling of deep excavation over existing tunnels. Geotech. Eng. 2014, 167, 3–18. [Google Scholar] [CrossRef]
- Kim, S.H. Model testing of closely spaced tunnels in clay. Geotechnique 1998, 48, 375–388. [Google Scholar] [CrossRef]
- Byun, G.W.; Kim, D.G.; Lee, S.D. Behaviour of the Ground in Rectangularly Crossed Area Due to Tunnel Excavation under the Existing Tunnel. Tunn. Undergr. Space Technol. 2006, 21, 361. [Google Scholar] [CrossRef]
- Hansmire, W.; Parker, H.; Ghaboussi, J. Effects of shield tunneling over subways. In Proceedings of the 5th Rapid Excavation and Tunneling Conference, San Francisco, CA, USA, 3–7 May 1981; Volume 1, pp. 254–276. [Google Scholar]
- Ghaboussi, J.; Hansmire, W.H.; Parker, H.W.; Kim, K.J. Finite element simulation of tunneling over subways. J. Geotech. Eng. 1983, 109, 318–334. [Google Scholar] [CrossRef]
- Deng, J.-Y.; Yao, A.-J.; Zhou, J.; Chu, P.-Z. Analysis on Field Measurement of Shield Construction of Adjacent Tunnels. Chin. J. Undergr. Space Eng. 2020, 16, 1809–1817. [Google Scholar]
- Liang, R.-Z. Simplified analytical method for evaluating the effects of overcrossing tunnelling on existing shield tunnels using the nonlinear Pasternak foundation model. Soils Found. 2019, 59, 1711–1727. [Google Scholar] [CrossRef]
- Winkler, E. Die Lehre von der Elastizität und Festigkeit. In The Theory of Elasticity and Stiffness; H. Dominicus: Prague, Czechoslovakia, 1867. (In German) [Google Scholar]
- Pasternak, P.L. On a New Method of Analysis of An Elastic Foundation by Means of Two Foundation Constants; Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture: Moscow, Russia, 1954. (In Russian) [Google Scholar]
- Terzaghi, K. Evaluation of coefficient of subgrade reaction. Géotechnique 1955, 5, 297–326. [Google Scholar] [CrossRef]
- Vesić, A.B. Bending of beams resting on isotropic elastic solid. J. Eng. Mech. Div. 1961, 87, 35–53. [Google Scholar] [CrossRef]
- Liang, R.; Xia, T.; Hong, Y.; Yu, F. Effects of above-crossing tunnelling on the existing shield tunnels. Tunn. Undergr. Space Technol. 2016, 58, 159–176. [Google Scholar] [CrossRef]
- Do, N.-A.; Dias, D.; Oreste, P.; Djeran-Maigre, I. Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunn. Undergr. Space Technol. 2014, 42, 40–51. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, B.; Qin, Y. Construction of a large-section long pedestrian underpass using pipe jacking in muddy silty clay: A case study. Tunn. Undergr. Space Technol. 2016, 60, 151–164. [Google Scholar] [CrossRef]
- Huang, X.; Schweiger, H.F.; Huang, H. Influence of Deep Excavations on Nearby Existing Tunnels. Int. J. Géoméch. 2013, 13, 170–180. [Google Scholar] [CrossRef]
- Shi, J.; Fu, Z.; Guo, W. Investigation of geometric effects on three-dimensional tunnel deformation mechanisms due to basement excavation. Comput. Geotech. 2019, 106, 108–116. [Google Scholar] [CrossRef]
- GB 50911-2013; Code for Monitoring Measurement of Urban Rail Transit Engineering. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2013.
- CJJ/T202-2013; Technical Code for Protection Structures of Urban Rail Transit. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2013.
- Kasper, T.; Meschke, G. A 3D finite element simulation model for TBM tunnelling in soft ground. Int. J. Numer. Anal. Methods Géoméch. 2004, 28, 1441–1460. [Google Scholar] [CrossRef]
- Huynh, T.; Chen, J.; Sugimoto, M. Analysis on shield operational parameters to steer articulated shield. Jpn. Geotech. Soc. Spéc. Publ. 2016, 2, 1497–1500. [Google Scholar] [CrossRef]
- DGTJ08-61-2018; Technical Code for Excavation Engineering. Shanghai Housing and Urban and Rural Construction Management Commission: Shanghai, China, 2018.
- MIDAS GTS NX Advanced Textbook. Available online: https://midas.yunzhan365.com/books/cwxb/mobile/index.html (accessed on 10 March 2021).
- Duncan, J.; Chang, C. Nonlinear Analysis of Stress and Strain in Soils. J. Soil Mech. Found. Div. 1970, 96, 1629–1653. [Google Scholar] [CrossRef]
- Sun, L.-C. Numerical Analysis and Deformation Prediction of Deep Foundation Pit Based on Modified Moorcoulomb Model. Master’s Thesis, Hebei University of Architecture, Zhangjiakou, China, 2021. [Google Scholar]
- Liu, G.-B.; Wang, W.-D. Foundation Pit Engineering Manual; China Architecture & Building Press: Beijing, China, 2009; ISBN 9787112115525. [Google Scholar]
- Zhang, Y.; Xue, Y.-Q.; Wu, J.-C.; Pu, X.-F.; Liu, Y.-T.; Wei, Z.-X.; Li, Q.-F. Parameter study of Duncan-Zhang model of Quaternary soil layer in Shanghai. Hydrogeol. Eng. Geol. 2008, 219, 19–22. [Google Scholar]
- Zhang, Z.-H. Shield and Shield Construction Technology; China Architecture & Building Press: Beijing, China, 2019; ISBN 9787112237913. [Google Scholar]
- Zhu, J.-F.; Xu, R.-Q.; Liu, G.-B. Analytical prediction for tunnelling-induced ground movements in sands considering disturbance. Tunn Undergr Space Technol 2014, 41, 165–175. [Google Scholar] [CrossRef]
- Kavvadas, M.; Litsas, D.; Vazaios, I.; Fortsakis, P. Development of a 3D finite element model for shield EPB tunnelling. Tunn. Undergr. Space Technol. 2017, 65, 22–34. [Google Scholar] [CrossRef]
- Ninić, J.; Meschke, G. Simulation based evaluation of time-variant loadings acting on tunnel linings during mechanized tunnel construction. Eng. Struct. 2017, 135, 21–40. [Google Scholar] [CrossRef]
- Do, N.-A.; Dias, D.; Oreste, P.; Djeran-Maigre, I. Three-dimensional numerical simulation for mechanized tunnelling in soft ground: The influence of the joint pattern. Acta Geotech. 2013, 9, 673–694. [Google Scholar] [CrossRef]
- Wang, M.-Q.; Chen, S.-H. 3-dimensional nonlinear finite element simulation of tunnel structure for moving-forward shield. Chin. J. Rock Mech. Eng. 2002, 21, 228–232. [Google Scholar] [CrossRef]
- Zheng, G.; Du, Y.-M.; Diao, Y.; Deng, X.; Zhu, G.-P.; Zhang, L.-M. Influenced zones for deformation of existing tunnels adjacent to excavations. Chin. J. Geotech. Eng. 2016, 38, 599–612. [Google Scholar]
- Meng, F.Y.; Chen, R.P.; Xu, Y.; Wu, K.; Wu, H.N.; Liu, Y. Contributions to responses of existing tunnel subjected to nearby excavation: A review. Tunn. Undergr. Space Technol. 2022, 119, 104195. [Google Scholar] [CrossRef]
- Chen, L.; Huang, H.; Wang, R. Analysis of the observed longitudinal settlement of a tunnel caused by an adjacent shield tunnelling on top. Chin. J. Civ. Eng. 2006, 39, 83–87. [Google Scholar]
Soil | Natural Unit Weight | Cohesion | Angle of Friction | Soil Thickness (m) |
---|---|---|---|---|
Miscellaneous fill | 17.5 | 8 | 15 | 3 |
Powdered sand | 19.3 | 5 | 33 | 8.4 |
Silt with sandy silt | 19.2 | 5 | 33 | 4.0 |
Sandy silt | 19.6 | 6 | 28 | 3.4 |
Silty clay | 19.1 | 28 | 18 | 4.3 |
Clay | 19 | 25 | 19 | 4.8 |
Puddingstone | 20.2 | 3 | 42 | 16.5 |
Strongly weathered rock | 25 | 50 | 37 | 3.1 |
Moderately weathered rock | 25.2 | 100 | 38 | 12.5 |
Soil | Poisson Ratio | Natural Unit Weight | |||
---|---|---|---|---|---|
Miscellaneous fill | 0.38 | 17.5 | 3 | 3 | 9 |
Powdered sand | 0.28 | 19.3 | 14 | 14 | 42 |
Silt with sandy silt | 0.3 | 19.2 | 15 | 15 | 45 |
Sandy silt | 0.3 | 19.6 | 7 | 7 | 21 |
Silty clay | 0.33 | 19.1 | 12 | 12 | 36 |
Clay | 0.3 | 19 | 10 | 10 | 30 |
Puddingstone | 0.3 | 20.2 | 40 | 40 | 120 |
Strongly weathered rock | 0.23 | 25 | 30 | 30 | 150 |
Moderately weathered rock | 0.13 | 25.2 | 50 | 50 | 300 |
Structure Name | Element Type | Elasticity Modulus | Poisson Ratio | Volumetric Weight | Material | Sectional Dimensions |
---|---|---|---|---|---|---|
Crown beam and first concrete support | 1D beam element | 2.80 × 107 | 0.2 | 23.5 | C35 | Filled rectangle: H = 0.8 m and B = 0.8 m |
Third concrete support of shield initiation well and waist beam | 1D beam element | 2.80 × 107 | 0.2 | 23.5 | C35 | Filled rectangle: H = 1.0 m and B = 0.8 m |
Collar beam | 1D beam element | 2.80 × 107 | 0.2 | 23.5 | C35 | Filled rectangle: H = 0.6 m and B = 0.6 m |
Steel support of shield initiation well | 1D beam element | 2.06 × 108 | 0.3 | 78.5 | Q235 | Cast: D = 0.8 m and T = 0.016 m |
Steel support of standard section | 1D beam element | 2.06 × 108 | 0.3 | 78.5 | Q235 | Cast: D = 0.609 m and T = 0.016 m |
Underground diaphragm wall | 2D plate element | 2.80 × 108 | 0.2 | 23.5 | C35 | T = 0.8 m |
Shield shell | 2D plate element | 2.06 × 108 | 0.3 | 78.5 | Q235 | T = 0.06 m |
Shield segment | 2D plate element | 3.45 × 107 | 0.3 | 25 | C50 | T = 0.35 m |
Shield grouting layer | 3D solid element | 3.00 × 107 | 0.2 | 23 | / | / |
Name of the Load | Load Type | Position of the Action | Load Size (kPa) |
---|---|---|---|
Shield driving pressure | Face element | Palm surface | 128 |
Jack hydraulic pressure | Line element | Shield shell | 218 |
Grouting pressure | Face element | Grouting layer | 250 |
Stage | Construction Activity | Date | Remark |
---|---|---|---|
S1: Excavation and structural work at the shield’s initial well foundation pit. | Excavation of the foundation pit and construction of the structure. | 25 May 2019–31 October 2019 | There is a great disturbance to the existing line. |
S2: The new tunnel passes above the existing tunnel. | New tunnel right-line tunneling | 14 July 2020–23 August 2020 | The shield successfully installed 100 rings, exceeding the influence range of the current line. |
S3: The new tunnel intersects with the existing tunnel. | New tunnel left-line tunneling | 6 January 2021–22 January 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Ye, F.; Han, X.; Han, X. Comparative Analysis of the Numerical Simulation and Measured Data of an Existing Tunnel Subjected to Multiple Disturbances: A Case Study. Appl. Sci. 2024, 14, 4717. https://doi.org/10.3390/app14114717
Li H, Ye F, Han X, Han X. Comparative Analysis of the Numerical Simulation and Measured Data of an Existing Tunnel Subjected to Multiple Disturbances: A Case Study. Applied Sciences. 2024; 14(11):4717. https://doi.org/10.3390/app14114717
Chicago/Turabian StyleLi, Haoran, Fei Ye, Xingbo Han, and Xin Han. 2024. "Comparative Analysis of the Numerical Simulation and Measured Data of an Existing Tunnel Subjected to Multiple Disturbances: A Case Study" Applied Sciences 14, no. 11: 4717. https://doi.org/10.3390/app14114717
APA StyleLi, H., Ye, F., Han, X., & Han, X. (2024). Comparative Analysis of the Numerical Simulation and Measured Data of an Existing Tunnel Subjected to Multiple Disturbances: A Case Study. Applied Sciences, 14(11), 4717. https://doi.org/10.3390/app14114717