Hot-Spot Stress Analyses of a T-Shaped Tubular Joint Subjected to Uniform, Grooving and Non-uniform Corrosion
Abstract
:1. Introduction
2. Finite Element Model to Determine SCF
2.1. Finite Element Model
2.2. Hot-Spot Stress
3. Corrosion Modelling
3.1. Uniform and Grooving Corrosion
3.2. Non-Uniform Corrosion
4. Results
4.1. Effect of Uniform Corrosion
4.2. Effect of Grooving Corrosion
4.3. Effect of Non-Uniform Corrosion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guedes Soares, C.; Garbatov, Y. Reliability of maintained ship hulls subjected to corrosion and fatigue under combined loading. J. Constr. Steel Res. 1999, 52, 93–115. [Google Scholar] [CrossRef]
- DNV. Allowable Thickness Diminution for Hull Structure. 2014, Classification Note No. 72.1. Available online: http://www.lloydsbritishegyptgroups.com/PDF/DNV.pdf (accessed on 8 May 2024).
- Shojai, S.; Schaumann, P.; Braun, M.; Ehlers, S. Influence of pitting corrosion on the fatigue strength of offshore steel structures based on 3D surface scans. Int. J. Fatigue 2022, 164, 107128. [Google Scholar] [CrossRef]
- Moan, T.; Ayala-Uraga, E. Reliability-based assessment of deteriorating ship structures operating in multiple sea loading climates. Reliab. Eng. Syst. Saf. 2008, 93, 433–446. [Google Scholar] [CrossRef]
- Dong, W.; Moan, T.; Gao, Z. Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection. Reliab. Eng. Syst. Saf. 2012, 106, 11–27. [Google Scholar] [CrossRef]
- Han, X.; Yang, D.Y.; Frangopol, D.M. Probabilistic life-cycle management framework for ship structures subjected to coupled corrosion–fatigue deterioration processes. J. Struct. Eng. 2019, 145, 04019116. [Google Scholar] [CrossRef]
- Yang, S.; Yang, H.; Liu, G.; Huang, Y.; Wang, L. Approach for fatigue damage assessment of welded structure considering coupling effect between stress and corrosion. Int. J. Fatigue 2016, 88, 88–95. [Google Scholar] [CrossRef]
- DNVGL. Fatigue Design of Offshore Steel Structures. Recommended Practice DNVGL-RP-C203 2019, DNVGL-RP-C203. Available online: https://www.dnv.com/oilgas/download/dnv-rp-c203-fatigue-design-of-offshore-steel-structures/ (accessed on 8 May 2024).
- Garbatov, Y.; Rudan, S.; Guedes Soares, C. Fatigue damage of structural joints accounting for nonlinear corrosion. J. Ship. Res. 2002, 46, 289–298. [Google Scholar] [CrossRef]
- Ahmadi, H.; Lotfollahi-Yaghin, M.A.; Yong-Bo, S.; Aminfar, M.H. Parametric study and formulation of outer-brace geometric stress concentration factors in internally ring-stiffened tubular KT-joints of offshore structures. Appl. Ocean Res. 2012, 38, 74–91. [Google Scholar] [CrossRef]
- Hectors, K.; De Waele, W. A numerical framework for determination of stress concentration factor distributions in tubular joints. Int. J. Mech. Sci. 2020, 174, 105511. [Google Scholar] [CrossRef]
- Hectors, K.; De Waele, W. Influence of weld geometry on stress concentration factor distributions in tubular joints. J. Constr. Steel Res. 2021, 176, 106376. [Google Scholar] [CrossRef]
- DNV. Incident Information on Grooving Corrosion on Ship’s Side. Available online: https://officerofthewatch.com/2013/11/29/incident-information-on-grooving-corrosion-on-ships-side/ (accessed on 29 November 2013).
- Wang, Y.; Wharton, J.A.; Shenoi, R.A. Ultimate strength assessment of steel stiffened plate structures with grooving corrosion damage. Eng. Struct. 2015, 94, 29–42. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Du, F. Ultimate Strength of Hull Structural Stiffened Plate with Grooving Corrosion Damage under Uniaxial Compression. J. Ship. Res. 2021, 65, 309–319. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Chen, Z. Compressive strength of corroded special-shaped welded hollow spherical joints based on numerical simulation. Thin-Walled Struct. 2020, 149, 106531. [Google Scholar] [CrossRef]
- Chen, H.; Liu, H.; Chen, Z. Failure pressure of welded hollow spherical joints containing grooving corrosion defects and wall reduction. Int. J. Steel Struct. 2021, 21, 35–51. [Google Scholar] [CrossRef]
- Li, G.; Hou, C.; Shen, L.; Yao, G.-H. Performance and strength calculation of CFST columns with localized pitting corrosion damage. J. Constr. Steel Res. 2022, 188, 107011. [Google Scholar] [CrossRef]
- Wang, R.; Guo, H.; Shenoi, R.A. Experimental and numerical study of localized pitting effect on compressive behaviour of tubular members. Mar. Struct. 2020, 72, 102784. [Google Scholar] [CrossRef]
- Chen, B.-Q.; Zhang, X.; Guedes Soares, C. The effect of general and localized corrosions on the collapse pressure of subsea pipelines. Ocean Eng. 2022, 247, 110719. [Google Scholar] [CrossRef]
- Shojai, S.; Schaumann, P.; Brömer, T. Probabilistic modelling of pitting corrosion and its impact on stress concentrations in steel structures in the offshore wind energy. Mar. Struct. 2022, 84, 103232. [Google Scholar] [CrossRef]
- Dong, Y.; Garbatov, Y.; Guedes Soares, C. Recent Developments in Fatigue Assessment of Ships and Offshore Structures. J. Mar. Sci. Appl. 2022, 21, 3–25. [Google Scholar] [CrossRef]
- AWS. Structural Welding Code: AWS D1.1. 2020. Available online: https://istasazeh-co.com/wp-content/uploads/2022/02/AWS-D1.1-D1.1M-2020.pdf (accessed on 8 May 2024).
- ANSYS. Online Manuals. 2012. Available online: https://lsdyna.ansys.com/manuals/ (accessed on 8 May 2024).
- Dong, Y.; Liu, L.; Yang, H.; Garbatov, Y.; Liu, X. Impact of Uniform and Grooving Corrosion on Hot-spot Stresses of a T-Shaped Tubular Joint. In Proceedings of the International Conference on Maritime Technology and Engineering, Lisbon, Portugal, 14–16 May 2024. [Google Scholar]
- Hobbacher, A. Recommendations for Fatigue Design of Welded Joints and Components; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Yeoh, S.-K.; Soh, A.-K.; Soh, C.-K. Behaviour of tubular T-joints subjected to combined loadings. J. Constr. Steel Res. 1995, 32, 259–280. [Google Scholar] [CrossRef]
- Soh, A.-K. An improved procedure for the determination of hot spot stresses in tubular joints. Fatigue Fract. Eng. Mater. Struct. 1997, 20, 1709–1718. [Google Scholar] [CrossRef]
- Kato, C.; Otoguro, Y.; Kado, S.; Hisamatsu, Y. Grooving corrosion in electric resistance welded steel pipe in seawater. Corros. Sci. 1978, 18, 61–74. [Google Scholar] [CrossRef]
- Tanaka, Y.; Nakai, T.; Matsushita, H.; Niwa, T. Experimental study on grooving corrosion occurring on welded joints for ship structure. J. Jpn. Soc. Nav. Archit. Ocean Eng. 2007, 5, 261–268. [Google Scholar]
- Woloszyk, K.; Garbatov, Y. Advances in modelling and analysis of strength of corroded ship structures. J. Mar. Sci. Eng. 2022, 10, 807. [Google Scholar] [CrossRef]
- Tsagris, M.; Beneki, C.; Hassani, H. On the folded normal distribution. Mathematics 2014, 2, 12–28. [Google Scholar] [CrossRef]
- Gkatzogiannis, S.; Weinert, J.; Engelhardt, I.; Knoedel, P.; Ummenhofer, T. Correlation of laboratory and real marine corrosion for the investigation of corrosion fatigue behaviour of steel components. Int. J. Fatigue 2019, 126, 90–102. [Google Scholar] [CrossRef]
- Xia, R.; Jia, C.; Liu, C.; Liu, P.; Zhang, S. Non-uniform corrosion characteristics of the steel pipe pile exposed to marine environments. Ocean Eng. 2023, 272, 113873. [Google Scholar] [CrossRef]
Parameter | Range |
---|---|
End preparation angle, ω | From 10° (or 45° for ψ > 105°) to 90° |
Root opening, R | From 2 mm to 6 mm |
Root face, c | From 0 to 2 mm |
Joint included angle, φ | From 37.5° to 60° for ψ ≤ 105° Not less than 37.5° for ψ > 105° |
Weld leg size, F | From 0 to t/2 as ψ varies from 135° to 90° |
Weld thickness, tw | Not less than t |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Dong, Y.; Yang, H.; Xu, M.; Liu, X.; Zhang, L.; Garbatov, Y. Hot-Spot Stress Analyses of a T-Shaped Tubular Joint Subjected to Uniform, Grooving and Non-uniform Corrosion. Appl. Sci. 2024, 14, 4812. https://doi.org/10.3390/app14114812
Liu L, Dong Y, Yang H, Xu M, Liu X, Zhang L, Garbatov Y. Hot-Spot Stress Analyses of a T-Shaped Tubular Joint Subjected to Uniform, Grooving and Non-uniform Corrosion. Applied Sciences. 2024; 14(11):4812. https://doi.org/10.3390/app14114812
Chicago/Turabian StyleLiu, Lingsu, Yan Dong, Haikun Yang, Minghui Xu, Xin Liu, Lei Zhang, and Yordan Garbatov. 2024. "Hot-Spot Stress Analyses of a T-Shaped Tubular Joint Subjected to Uniform, Grooving and Non-uniform Corrosion" Applied Sciences 14, no. 11: 4812. https://doi.org/10.3390/app14114812
APA StyleLiu, L., Dong, Y., Yang, H., Xu, M., Liu, X., Zhang, L., & Garbatov, Y. (2024). Hot-Spot Stress Analyses of a T-Shaped Tubular Joint Subjected to Uniform, Grooving and Non-uniform Corrosion. Applied Sciences, 14(11), 4812. https://doi.org/10.3390/app14114812