Oncom from Surplus Bread Enriched in Vitamin B12 via In Situ Production by Propionibacterium freudenreichii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation Substrates
2.2. Neurospora Sitophila Inoculum for the Production of Red Oncom—Preparation of Rice Starter
2.3. Inoculum of Propionic Bacteria
2.3.1. Propionibacterium freudenreichii ssp. shermanii Dairy Starter Culture
2.3.2. Propionibacterium freudenreichii DSM 20271 Strain
2.4. Fermentation Experiment
2.5. Determination of Dry Mass, pH and Tritatable Acidity in Fresh Oncom
2.6. Determination of the Amount of P. freudenreichii (CFU) after Oncom Fermentation
2.7. Determination of Chemical Composition of Oncom
2.8. Determination of Vitamin B12
2.9. Statistical Analysis
3. Results
3.1. Characteristics of Fermentation Substrates
3.2. Experiment I
3.2.1. Changes in Dry Mass, pH, Titratable Acidity and P. freudenreichii Amounts after Oncom Fermentation
3.2.2. Chemical Composition of Oncom and Vitamin B12 Level
3.3. Experiment II
3.3.1. Changes in Dry Mass, pH, Titratable Acidity, and P. freudenreichii Amounts after Oncom Fermentation
3.3.2. Chemical Composition of Oncom and Vitamin B12 Level
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://bdl.stat.gov.pl/bdl/dane/podgrup/wymiary/3/10/2456 (accessed on 24 February 2024).
- Raport “Nie Marnuj Jedzenia 2023” 16 Października 2023. Available online: https://bankizywnosci.pl/swiatowy-dzien-zywnosci-2023/ (accessed on 24 February 2024).
- Goryńska-Goldman, E.; Gazdecki, M.; Rejman, K.; Kobus-Cisowska, J.; Łaba, S.; Łaba, R. How to prevent bread losses in the baking and confectionery industry?—Mesurement, causes, management and prevention. Agriculture 2021, 11, 19. [Google Scholar] [CrossRef]
- Melikoglu, M.; Lin, C.S.K.; Webb, C. Stepwise optimisation of enzyme production in solid-state fermentation of waste bread pieces. Food Bioprod. Process. 2013, 91, 638–646. [Google Scholar] [CrossRef]
- Gmoser, R.; Sintca, C.; Taherzadeh, M.J.; Lennartsson, P.R. Combining submerging and solid-state fermentation to convert waste bread into protein and pigment using the edible filamentous fungus N. intermedia. Waste Manag. 2019, 97, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Svensson, S.E.; Bfova, L.; Ferreira, J.A.; Souza Filho, P.F.; Taherzadeh, M.J.; Zamani, A. Valorization of bread waste to a fiber and protein-rich fungal biomass. Fermentation 2021, 7, 91. [Google Scholar] [CrossRef]
- Meral, H.; Karaoğlu, M.M. The effect of the stale bread flour addition on flour and bread quality. Int. J. Food Eng. 2020, 16, 20190100. [Google Scholar] [CrossRef]
- Yuksel, F.; Kayacier, A. Effects of addition of stale bread flour on the acrylamide, fatty acid composition, resistant starch content, and in vitro glycemic index in wheat chips production using response surface methodology. LWT 2022, 161, 113354. [Google Scholar] [CrossRef]
- Surono, I.S. Ethnic fermented foods, and beverages of Indonesia. In Ethnic Fermented Foods and Alcoholic Beverages of Asia; Tamang, J.P., Ed.; Springer: New Delhi, India, 2016; pp. 341–382. [Google Scholar]
- Perkins, D.D.; Davis, R.H. Evidence of the safety of Neurospora species for academic and commercial uses. Appl. Environ. Microbiol. 2000, 66, 5107–5109. [Google Scholar] [CrossRef]
- Hellwig, C.; Gmoser, R.; Lundin, M.; Taherzadeh, M.J.; Rousta, K. Fungi burger from stale bread? A case study on the perception of a novel protein-rich food product made from an edible fungus. Foods 2020, 9, 1112. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Gmoser, R.; Taherzadeh, M.J.; Lennartsson, P.R. Solid-state fermentation of stale bread by an edible fungus in a semi-continuous plug-flow bioreactor. Biochem. Eng. J. 2021, 168, 107959. [Google Scholar] [CrossRef]
- Brancoli, P.; Gmoser, R.; Taherzadeh, M.J.; Bolton, K. The use of life cycle assessment in the support of the development of fungal food products from surplus bread. Fermentation 2021, 7, 173. [Google Scholar] [CrossRef]
- Gmoser, R.; Lennartsson, P.R.; Taherzadeh, M.J. From surplus bread to burger using filamentous fungi at bakeries: Techno-economical evaluation. Clean. Environ. Syst. 2021, 2, 100020. [Google Scholar] [CrossRef]
- Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B12-containing plant food sources for vegetarians. Nutrients 2014, 6, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Laganà, A.S.; Rapisarda, A.M.C.; La Ferrera, G.M.G.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F.; et al. Vitamin B12 among vegetarians: Status, assessment and supplementation. Nutrients 2016, 8, 767. [Google Scholar] [CrossRef] [PubMed]
- Human Vitamin and Minerals Requirements. Report of a Joint FAO/WHO Expert Consultation, 2001, Bangkok, Thailand. Chapter 5. Vitamin B12. Available online: https://www.fao.org/3/Y2809E/y2809e0b.htm#bm11. (accessed on 15 April 2024).
- Available online: https://ncez.pzh.gov.pl/ciaza-i-macierzynstwo/plodnosc-i-ciaza/witamina-b12-a-dieta-wegetarianska-i-ciaza (accessed on 24 February 2024).
- Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Kieliszek, M. Propionibacterium spp.—Source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl. Microbiol. Biotechnol. 2018, 102, 515–538. [Google Scholar] [CrossRef]
- Meile, L.; Le Blay, G.; Thierry, A. Safety assessment of dairy microorganisms: Propionibacterium and Bifidobacterium. Int. J. Food Microbiol. 2008, 126, 316–320. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards. The maintenance of the list of QPS microorganisms intentionally added as food or feed. EFSA J. 2008, 923, 1–48. [Google Scholar]
- Okada, N.; Hadioetomo, R.S.; Nikkuni, S.; Katoh, K.; Ohta, T. Vitamin B12 contents of fermented foods in the tropics. Rep. Natl. Food Res. Inst. 1983, 43, 126–129. [Google Scholar]
- Keuth, S.; Bisping, B. Formation of vitamins by pure cultures of tempe moulds and bacteria during the tempe solid substrate fermentation. J. Appl. Bacteriol. 1993, 75, 427–434. [Google Scholar] [CrossRef]
- Krusong, W.; Yongsmith, B.; Sanchez, P.C. Influence of Lactobacillus casei in production of high vitamin B12-tempeh. Agric. Natur. Res. 1991, 25, 458–462. [Google Scholar]
- Wolkers-Rooijackers, J.C.M.; Endika, M.F.; Smid, E.J. Enhancing vitamin B12 in lupin tempeh by in situ fortification. LWT 2018, 96, 513–518. [Google Scholar] [CrossRef]
- Signorini, C.; Carpen, A.; Coletto, L.; Borgonovo, G.; Galanti, E.; Capraro, J.; Magni, C.; Abate, A.; Johnson, S.T.; Duranti, M.; et al. Enhanced vitamin B12 production in innovative lupine tempeh is due to synergic effects of Rhizopus and Propionibacterium in cofermentation. Int. J. Food Sci. Nutr. 2018, 69, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Kustyawati, M.E.; Subeki; Murhadi; Rizal, S.; Astuti, P. Vitamin B12 production in soybean fermentation for tempeh. AIMS Agric. Food 2020, 5, 262–271. [Google Scholar] [CrossRef]
- PN-EN ISO 11085; Cereal Grains, Products Based on Cereal Grains and Animal Feed-Determination of Crude Fat and Total Fat by Randall Extraction Method. The Polish Committee for Standardization (PKN): Warsaw, Poland, 2010.
- ICC-STANDARD, No. 104/1; Determination of Ash in Cereals and Cereal Products. International Association for Cereal Science and Technology: Stubenring, Austria, 1990.
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Gmoser, R.; Fristedt, R.; Larsson, K.; Undeland, I.; Taherzadeh, M.J.; Lennartsson, P.R. From stale bread and brewers spent grain to a new food source using edible filamentous fungi. Bioengineered 2020, 11, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, C.; Rousta, N.; Wikandri, R.; Taherzadeh, M.J.; Häggblom-Kronlöf, G.; Blton, K.; Rousta, K. Household fermentation of leftover bread to nutritious food. Waste Manag. 2022, 150, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Starzyńska-Janiszewska, A.; Stodolak, B.; Duliński, R.; Mickowska, B.; Sabat, R. Fermentation of colored quinoa seeds with Neurospora intermedia to obtain oncom-type products of favorable nutritional and bioactive characteristics. Cereal Chem. 2017, 94, 619–624. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Worthington, L.E. Changes in the lipid content of fermented peanuts. J. Agr. Food Chem. 1974, 22, 509–512. [Google Scholar] [CrossRef]
- Stodolak, B.; Starzyńska-Janiszewska, A.; Bączkowicz, M. Aspergillus oryzae (Koji Mold) and Neurospora intermedia (Oncom Mold) application for flaxseed oil cake processing. LWT 2020, 131, 109651. [Google Scholar] [CrossRef]
- Starzyńska-Janiszewska, A.; Duliński, R.; Stodolak, S.; Mickowska, B.; Wikiera, A. Prolonged tempe-type fermentation in order to improve bioactive potential and nutritional parameters of quinoa seeds. J. Cereal Sci. 2016, 71, 116–121. [Google Scholar] [CrossRef]
- Kumbhare, P.H. Activity assay of the enzymes amylase, protease, and lipase produced by N. intermedia MTCC 1230 and R. oligosporus MTCC 556 during peanut press cake fermentation. Int. J. Res. Biosci. Agric. Technol. 2015, 2, 183–187. [Google Scholar]
- Shahryari, Z.; Fazaelipoor, M.M.; Ghasemi, Y.; Lennartson, P.R.; Taherzadeh, M.J. Amylase and xylanase from edible fungus Neurospora intermedia: Production and characterisation. Molecules 2019, 24, 721. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Coda, R.; Chamlagain, B.; Varmanen, P.; Piironen, V.; Katina, K. Co-fermentation of Propionibacterium freudenreichii and Lactobacillus brevis in wheat bran for in situ production of vitamin B12. Front. Microbiol. 2019, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
Bread Type | Protein (g/100 g DM) | Lipids (g/100 g DM) | Carbohydrates (g/100 g DM) | Sugars (g/100 g DM) | pH |
---|---|---|---|---|---|
Mixed bread | 10.65 | 0.63 | 82.62 | 1.08 | 4.27 |
Okin bread | 11.7 1 | 1.25 1 | 79.04 1 | 1.76 1 | 5.69 |
Oncom 1 | Dry Mass (%) | Dry Mass Loss (%) | pH | Titratable Acidity (Degrees) 2 |
---|---|---|---|---|
control | 36.12 ± 0.53 a 3 | 50.00 ± 0.27 a | 5.68 ± 0.05 a | 8.20 ± 1.19 a |
c-f 1 | 34.15 ± 2.29 a | 54.02 ± 5.55 a | 5.82 ± 0.05 a | 6.88 ± 0.15 a |
c-f 2 | 38.43 ± 0.29 b | 46.13 ± 1.85 a | 5.72 ± 0.03 a | 7.26 ± 0.81 a |
Oncom 1 | Protein (g/100 g DM) | Lipids (g/100 g DM) | Ash (g/100 g DM) | Carbohydrates (g/100 g DM) | Reducing Sugars (g/100 g DM) | Vitamin B12 (µg/100 g DM) |
---|---|---|---|---|---|---|
control | 22.74 ± 0.20 a 2 | 5.51 ± 0.10 b | 7.08 ± 0.16 b | 65.01 | 12.99 ± 0.68 a | 0.41 ± 0.00 |
c-f 1 | 22.38 ± 1.71 a | 3.61 ± 0.15 a | 7.76 ± 0.10 c | 66.48 | 11.98 ± 1.10 a | 0.72 ± 0.0 |
c-f 2 | 21.06 ± 2.89 a | 3.49 ± 0.13 a | 6.79 ± 0.05 a | 68.88 | 13.26 ± 1.44 a | 0.56 ± 0.0 |
Oncom 1 | Dry Mass (%) | Dry Mass Loss (%) | pH | Titratable Acidity (Degrees) 2 | |
---|---|---|---|---|---|
Mixed bread | control | 40.17 ± 0.97 a 3 | 41.69 ± 2.07 c | 5.57 ± 0.03 cd | 10.19 ± 0.48 ab |
c-f 1 | 42.15 ± 0.74 a | 38.69 ± 2.23 ab | 5.50 ± 0.10 bc | 13.06 ± 1.52 c | |
c-f 2 | 38.12 ± 1.36 a | 43.27 ± 1.64 c | 5.67 ± 0.01 d | 9.55 ± 0.60 a | |
Okin bread | control | 42.62 ± 1.03 a | 37.33 ± 2.01 a | 5.41 ± 0.09 ab | 10.10 ± 0.13 ab |
c-f 1 | 40.50 ± 2.37 a | 41.33 ± 0.94 bc | 5.35 ± 0.06 a | 11.68 ± 0.93 bc | |
c-f 2 | 38.96 ± 1.36 a | 43.34 ± 1.37 c | 5.70 ± 0.00 d | 10.19 ± 0.31 ab |
Oncom 1 | Protein (g/100 g DM) | Lipids (g/100 g DM) | Ash (g/100 g DM) | Carbohydrates (g/100 g DM) | Reducing Sugars (g/100 g DM) | Vitamin B12 (µg/100 g DM) | |
---|---|---|---|---|---|---|---|
Mixed bread | control | 18.51 ± 0.46 b 2 | 1.72 ± 0.06 a | 5.96 ± 0.05 e | 73.79 | 11.81 ± 0.72 b | 0.25 ± 0.00 a |
c-f 1 | 17.55 ± 0.38 a | 2.75 ± 0.27 c | 5.70 ± 0.09 d | 73.98 | 11.73 ± 1.48 b | 0.37 ± 0.0 b | |
c-f 2 | 18.34 ± 0.39 b | 4.14 ± 0.12 d | 5.42 ± 0.01 c | 72.24 | 11.61 ± 0.22 b | 2.22 ± 0.0 d | |
Okin bread | control | 21.08 ± 0.35 c | 2.32 ± 0.05 b | 4.62 ± 0.05 a | 71.95 | 6.20 ± 0.016 a | 0.25 ± 0.0 a |
c-f 1 | 22.46 ± 0.27 d | 2.75 ± 0.12 c | 5.04 ± 0.03 b | 69.74 | 6.15 ± 0.60 a | 0.78 ± 0.0 c | |
c-f 2 | 22.87 ± 0.40 d | 1.76 ± 0.10 a | 6.08 ± 0.03 f | 69.28 | 12.52 ± 0.15 b | 3.31 ± 0.0 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stodolak, B.; Starzyńska-Janiszewska, A.; Poniewska, D. Oncom from Surplus Bread Enriched in Vitamin B12 via In Situ Production by Propionibacterium freudenreichii. Appl. Sci. 2024, 14, 4879. https://doi.org/10.3390/app14114879
Stodolak B, Starzyńska-Janiszewska A, Poniewska D. Oncom from Surplus Bread Enriched in Vitamin B12 via In Situ Production by Propionibacterium freudenreichii. Applied Sciences. 2024; 14(11):4879. https://doi.org/10.3390/app14114879
Chicago/Turabian StyleStodolak, Bożena, Anna Starzyńska-Janiszewska, and Dagmara Poniewska. 2024. "Oncom from Surplus Bread Enriched in Vitamin B12 via In Situ Production by Propionibacterium freudenreichii" Applied Sciences 14, no. 11: 4879. https://doi.org/10.3390/app14114879
APA StyleStodolak, B., Starzyńska-Janiszewska, A., & Poniewska, D. (2024). Oncom from Surplus Bread Enriched in Vitamin B12 via In Situ Production by Propionibacterium freudenreichii. Applied Sciences, 14(11), 4879. https://doi.org/10.3390/app14114879