Application of Geomorphic Signatures in Relative Tectonic Activity Assessment of a Red Sea Coastal Basin between Al Farrah and Heelan, Saudi Arabia
Abstract
:1. Introduction
2. Geological Setting of the Study Basin
3. Material and Methods
3.1. Rock Strength (Rs)
3.2. Stream Length Gradient (SL)
3.3. Basin Asymmetric Factor (Af)
3.4. Hypsometric Integral Index (HI)
3.5. Drainage Basin Shape (BS)
3.6. Mountain Front Sinousity (Smf)
3.7. Valley Floor Width-to-Valley Floor Height Index (Vf)
3.8. Relative Tectonic Activity Index (Rta)
4. Results
4.1. Rock Strength (Rs)
4.2. Stream Length Gradient (SL)
4.3. Basin Asymmetric Factor (Af)
4.4. Hypsometric Integral Index (HI)
4.5. Drainage Basin Shape (Bs)
4.6. Mountain Front Sinousity (Smf) and Valley Floor Width-to-Valley Floor Height (Vf) Indices
4.7. Relative Tectonic Activity (Rta)
5. Discussion
5.1. Tectonic Geomorphology Techniques
5.2. Geomorphic Indices
5.3. Geomorphic Indices Distribution and Analysis
5.4. Geomorphic Indices and Relative Tectonic Activity Index
5.5. Validity of the Relative Tectonic Activity Index
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalifa, A.; Çakir, Z.; Owen, L.A.; Kaya, Ş. Morphotectonic analysis of the East Anatolian Fault, Turkey. Turk. J. Earth Sci. 2018, 27, 110–126. [Google Scholar] [CrossRef]
- Azor, A.; Keller, E.A.; Yeats, R.S. Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline, Ventura basin, southern California. Bull. Geol. Soc. Am. 2002, 114, 745–753. [Google Scholar] [CrossRef]
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Castelltort, S.; Goren, L.; Willett, S.D.; Champagnac, J.D.; Herman, F.; Braun, J. River drainage patterns in the New Zealand Alps primarily controlled by plate tectonic strain. Nat. Geosci. 2012, 5, 744–748. [Google Scholar] [CrossRef]
- Ul-Hadi, S.; Khan, S.D.; Owen, L.A.; Khan, A.S. Geomorphic response to an active transpressive regime: A case study along the Chaman strike-slip fault, western Pakistan. Earth Surf. Process. Landf. 2013, 38, 250–264. [Google Scholar] [CrossRef]
- Topal, S.; Keller, E.; Bufe, A.; Koçyiğit, A. Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey. Geomorphology 2016, 259, 55–69. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Öğretmen, N. Morpho-tectonic assessment of the abu-dabbab area, eastern desert, egypt: Insights from remote sensing and geospatial analysis. ISPRS Int. J. Geoinf. 2021, 10, 784. [Google Scholar] [CrossRef]
- Moucha, R.; Forte, A.M.; Rowley, D.B.; Mitrovica, J.X.; Simmons, N.A.; Grand, S.P. Deep mantle forces and the uplift of the Colorado Plateau. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- D’Agostino, N.; Jackson, J.A.; Dramis, F.; Funiciello, R. Interactions between mantle upwelling, drainage evolution and active normal faulting: An example from the Central Appennines (Italy). Geophys. J. Int. 2001, 147, 475–497. [Google Scholar] [CrossRef]
- Yildirim, C. Relative tectonic activity assessment of the Tuz Gölü Fault Zone Central Anatolia, Turkey. Tectonophysics 2014, 630, 183–192. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Naik, S.P.; Nappi, R. Remotely Sensed Data, Morpho-Metric Analysis, and Integrated Method Approach for Flood Risk Assessment: Case Study of Wadi Al-Arish Landscape, Sinai, Egypt. Water 2023, 15, 1797. [Google Scholar] [CrossRef]
- Kalifa, A.; Çakir, Z.; Owen, L.A.; Kaya, S. Evaluation of the relative tectonic activity of the adıyaman fault within the arabian-anatolian plate boundary (Eastern Turkey). Geol. Acta 2019, 17, 1–17. [Google Scholar] [CrossRef]
- Faghih, A.; Samani, B.; Kusky, T.; Khabazi, S.; Roshanak, R. Geomorphologic assessment of relative tectonic activity in the Maharlou Lake Basin, Zagros Mountains of Iran. Geol. J. 2012, 47, 30–40. [Google Scholar] [CrossRef]
- Molin, P.; Pazzaglia, F.J.; Dramis, F. Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila Massif, Calabria, southern Italy. Am. J. Sci. 2004, 304, 559–589. [Google Scholar] [CrossRef]
- Gao, M.X.; Chen, G.H.; Xu, X.W. Geomorphic indices indicated recent differential tectonic uplift of the Lintan-Dangchang fault and the Minxian-Zhangxian earthquake. Dizhen Dizhi 2015, 37, T13D-2556. [Google Scholar] [CrossRef]
- Klinge, M.; Lehmkuhl, F. Geomorphology of the Tsetseg Nuur basin, Mongolian Altai—Lake development, fluvial sedimentation and aeolian transport in a semi-arid environment. J. Maps 2013, 9, 361–366. [Google Scholar] [CrossRef]
- Bull, W.B.; McFadden, L.D. Tectonic geomorphology north and south of the Garlock fault, California. In Proceedings of the Geomorphology in Arid Regions, Proceeding 8th Annual Geomorphology Symposium, State University New York at Binghamton, Binghamton, NY, USA, 23–24 September 1977; Volume 1977. [Google Scholar] [CrossRef]
- Silva, P.G.; Goy, J.L.; Zazo, C.; Bardají, T. Fault-Generated Mountain Fronts in Southeast Spain: Geomorphologic Assessment of Tectonic and Seismic Activity. Available online: www.elsevier.com/locate/geomorph (accessed on 1 February 2003).
- Mahmood, S.A.; Gloaguen, R. Appraisal of active tectonics in Hindu Kush: Insights from DEM derived geomorphic indices and drainage analysis. Geosci. Front. 2012, 3, 407–428. [Google Scholar] [CrossRef]
- Rockwell, T.K.; Keller, E.A.; Johnson Donald, L. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In Tectonic Geomorphology, Proceedings of the 15th Annual Geomorphology Symposium, September 1984; State University of New York at Binghamton: Binghamton, NY, USA; Available online: https://archive.org/details/tectonicgeomorph0000bing (accessed on 30 May 2024).
- Genna, A.; Nehling, P.; Le Goff, E.; Guerrot, C.; Shanti, M. Proterozoic tectonism of the Arabian Shield. Precambrian Res. 2002, 117, 21–40. [Google Scholar] [CrossRef]
- El-Isa, Z.H. Seismicity and Tectonics of the Red Sea and Westem Arabia. 1989. Available online: https://academic.oup.com/gji/article/97/3/449/662511 (accessed on 30 May 2024).
- Camp, V.E. Island arcs and their role in the evolution of the western Arabian Shield. Geol. Soc. Am. Bull. 1984, 95, 913–921. [Google Scholar] [CrossRef]
- Schmidt, D.L.; Hadley, D.G.; Stoeser, D.B. Late Proterozoic crustal history of the Arabian Shield, southern Najd Province, Kingdom of Saudi Arabia. Evol. Miner. Arab.-Nubian Shield. Proc. Symp. 1979, 2, 41–58. [Google Scholar] [CrossRef]
- Khalifa, A. Preliminary Active Tectonic Assessment of Wadi Ghoweiba Catchment, Gulf of Suez Rift, Egypt, Integration of Remote Sensing, Tectonic Geomorphology, and Gis Techniques. 2020. Available online: https://absb.journals.ekb (accessed on 30 May 2024).
- Selby, M.J. A rock mass strength classification for geomorphic purposes: With tests from Antarctica and New Zealand. Z. Fur. Geomorphol. 1980, 24, 31–51. [Google Scholar] [CrossRef]
- Bashir, B.; Alsalman, A. Morpho-Hydrological Analysis and Preliminary Flash Flood Hazard Mapping of Neom City, Northwestern Saudi Arabia, Using Geospatial Techniques. Sustainability 2024, 16, 23. [Google Scholar] [CrossRef]
- Morriss, M.C.; Wegmann, K.W. Geomorphology of the Burnt River, eastern Oregon, USA: Topographic adjustments to tectonic and dynamic deformation. Geomorphology 2017, 278, 43–59. [Google Scholar] [CrossRef]
- Hare, P.W.; Gardner, T.W. Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula Costa Rica. In Tectonic Geomorphology, Proceedings of the 15th Annual Binghamton Geomorphology Symposium; Allen and Unwin: Boston, MA, USA, 1985; Volume 4, pp. 123–134. [Google Scholar]
- Aju, C.D.; Achu, A.L.; Pranav, P.; Rajesh, R. Neotectonics assessment using geomorphic indices: A study from the passive continental margin of India. Geol. Ecol. Landsc. 2022, 1–16. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Bull. Geol. Soc. Am. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Bull. Geol. Soc. Am. 1971, 82, 1079–1084. [Google Scholar] [CrossRef]
- Green, D.J. Active Tectonics Earthquakes, Uplift, and Landscape. Environ. Eng. Geosci. 1997, III, 463–464. [Google Scholar] [CrossRef]
- Mayer, L. Introduction to Quantitative Geomorphology; Prentice Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Pérez-Peña, J.V.; Azor, A.; Azañón, J.M.; Keller, E.A. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 2010, 119, 74–87. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakır, Z.; Kaya, Ş.; Gabr, S. ASTER spectral band ratios for lithological mapping: A case study for measuring geological offset along the Erkenek Segment of the East Anatolian Fault Zone, Turkey. Arab. J. Geosci. 2020, 13, 832. [Google Scholar] [CrossRef]
- Buczek, K.; Górnik, M. Evaluation of tectonic activity using morphometric indices: Case study of the Tatra Mts. (Western Carpathians, Poland). Environ. Earth Sci. 2020, 79, 176. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, S.; Chen, S.; Li, S.; Lu, Y. Geomorphic evolution and neotectonics of the Qianhe River Basin on the southwest margin of the Ordos Block, North China. J. Asian Earth Sci. 2019, 176, 184–195. [Google Scholar] [CrossRef]
- Khalifa, A. Application of Remote sensing techniques in discrimination of rock units and preliminary assessment of tectonic activity using ASTER and ALOSE-PALSAR data at Gabal Delihimmi, Central Eastern Desert, Egypt. Egypt. J. Geol. 2023, 67, 287–298. [Google Scholar] [CrossRef]
- Whipple, K.X.; Kirby, E.; Brocklehurst, S.H. Geomorphic Limits to Climate-Induced Increases in Topographic Relief. 1999. Available online: www.nature.com (accessed on 30 May 2024).
- Williams, A.L. Geologicaly active. In Proceedings of the 11th IAEG Congress, Auckland, New Zealand, 5–10 September 2010; Available online: https://searchworks-lb.stanford.edu/view/9200326 (accessed on 30 May 2024).
- Kirby, E.; Whipple, K.X.; Tang, W.; Chen, Z. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. J. Geophys. Res. Solid Earth 2003, 108, 1–16. [Google Scholar] [CrossRef]
- Makrari, S.; Sharma, G.; Kumar Taloor, A.; Singh, M.S.; Sarma, K.K.; Aggarwal, S.P. Assessment of the geomorphic indices in relation to tectonics along selected sectors of Borpani River Basin, Assam using Cartosat DEM data. Geosyst. Geoenviron. 2022, 1, 68. [Google Scholar] [CrossRef]
- Ntokos, D.; Lykoudi, E.; Rondoyanni, T. Geomorphic analysis in areas of low-rate neotectonic deformation: South Epirus (Greece) as a case study. Geomorphology 2016, 263, 156–169. [Google Scholar] [CrossRef]
- Ramírez-Herrera, M.T. Geomorphic assessment of active tectonics in the acambay graben, Mexican volcanic belt. Earth Surf. Process. Landf. 1998, 23, 317–332. [Google Scholar]
- Cheng, Y.; He, C.; Rao, G.; Yan, B.; Lin, A.; Hu, J.; Yu, Y.; Yao, Q. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation. Tectonophysics 2018, 722, 11–24. [Google Scholar] [CrossRef]
- Bashir, B.; Alsalman, A. Geospatial Analysis for Relative Seismic Activity Assessment: A Case Study of Fatima Suture Zone in Western Saudi Arabia. Sustainability 2023, 15, 11130. [Google Scholar] [CrossRef]
Basins | Smf | Vf | Basins | Smf | Vf |
---|---|---|---|---|---|
1 | 1.14 | 0.86 | 22 | 1.17 | 0.8 |
2 | 1.05 | 0.40 | 23 | 1.03 | 1.6 |
3 | 1.03 | 0.30 | 24 | 1.03 | 0.14 |
4 | 1.15 | 0.21 | 25 | - | 0.44 |
5 | 1.03 | 0.32 | 26 | - | 0.20 |
6 | - | 2.96 | 27 | 1.00 | 2.92 |
7 | 1.48 | 1.22 | 28 | 1.03 | 0.42 |
8 | 1.06 | 0.12 | 29 | 1.02 | 2.66 |
9 | 1.01 | 0.35 | 30 | - | 2.9 |
10 | 1.05 | 0.47 | 31 | - | 3.2 |
11 | 1.14 | 0.67 | 32 | - | 5.5 |
12 | 1.11 | 2.62 | 33 | - | 3.7 |
13 | 1.00 | 1.66 | 34 | - | 2 |
14 | 1.00 | 4.41 | 35 | - | - |
15 | 1.07 | 0.82 | 36 | - | 3.71 |
16 | 1.07 | 0.63 | 37 | - | 6.28 |
17 | 1.03 | 1.02 | 38 | 1.12 | - |
18 | 1.01 | 0.34 | 39 | - | - |
19 | 1.12 | 2.43 | 40 | - | 0.76 |
20 | 1.15 | 4 | 41 | - | 3.2 |
21 | 1.04 | 0.73 | 42 | - | 1.9 |
Basins | Af Class | HI Class | Bs Class | Smf Class | Vf Class | S/N | Rta Class |
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 3 | 1 | 1 | 2 | 2 |
2 | 1 | 3 | 2 | 1 | 1 | 1.6 | 2 |
3 | 3 | 3 | 3 | 1 | 1 | 2.2 | 3 |
4 | 3 | 3 | 3 | 2 | 1 | 2.4 | 3 |
5 | 3 | 3 | 3 | 1 | 1 | 2.2 | 3 |
6 | - | 3 | 1 | - | 3 | 1.4 | 1 |
7 | 2 | 2 | 1 | 1 | 2 | 1.6 | 2 |
8 | 1 | 2 | 1 | 1 | 1 | 1.2 | 1 |
9 | 1 | 2 | 3 | 2 | 1 | 1.8 | 2 |
10 | 1 | 3 | 3 | 1 | 1 | 1.8 | 2 |
11 | 1 | 3 | 3 | 2 | 1 | 2 | 2 |
12 | 1 | 3 | 3 | 1 | 3 | 2.2 | 3 |
13 | 3 | 2 | 2 | 1 | 2 | 2 | 2 |
14 | 2 | 2 | 1 | 2 | 3 | 2 | 2 |
15 | 3 | 2 | 2 | 1 | 1 | 1.8 | 2 |
16 | - | 2 | 2 | 2 | 1 | 1.4 | 1 |
17 | 2 | 2 | 2 | 3 | 2 | 2.2 | 3 |
18 | - | 2 | 2 | 1 | 1 | 1.2 | 1 |
19 | - | 2 | 2 | 2 | 2 | 1.6 | 2 |
20 | - | 2 | 3 | 1 | 3 | 1.8 | 2 |
21 | 1 | 2 | 2 | 1 | 1 | 1.4 | 1 |
22 | 3 | 3 | 3 | 2 | 1 | 2.4 | 3 |
23 | 1 | 2 | 3 | 1 | 2 | 1.8 | 2 |
24 | 3 | 3 | 2 | 1 | 1 | 2 | 2 |
25 | 3 | 2 | 1 | - | 1 | 1.4 | 1 |
26 | 2 | 3 | 3 | - | 1 | 1.8 | 2 |
27 | 3 | 2 | 1 | 1 | 3 | 2 | 2 |
28 | 1 | 2 | 1 | 2 | 1 | 1.4 | 1 |
29 | 1 | 2 | 2 | 1 | 3 | 1.8 | 2 |
30 | 1 | 3 | 3 | - | 3 | 2 | 2 |
31 | 1 | 3 | 3 | - | 3 | 2 | 2 |
32 | 1 | 3 | 1 | - | 3 | 1.6 | 2 |
33 | 1 | 2 | 3 | - | 3 | 1.8 | 2 |
34 | - | 3 | 2 | - | 2 | 1.4 | 1 |
35 | 2 | 2 | 2 | - | - | 1.2 | 1 |
36 | - | 2 | 1 | - | 3 | 1.2 | 1 |
37 | 3 | 2 | 2 | - | 3 | 2 | 2 |
38 | - | 2 | 1 | 1 | - | 0.8 | 1 |
39 | 3 | 2 | 1 | - | - | 1.2 | 1 |
40 | 1 | 3 | 3 | - | 1 | 1.6 | 2 |
41 | - | 2 | 3 | - | 3 | 1.6 | 2 |
42 | - | 2 | 2 | - | 2 | 1.2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, B.; Alsalman, A. Application of Geomorphic Signatures in Relative Tectonic Activity Assessment of a Red Sea Coastal Basin between Al Farrah and Heelan, Saudi Arabia. Appl. Sci. 2024, 14, 4980. https://doi.org/10.3390/app14124980
Bashir B, Alsalman A. Application of Geomorphic Signatures in Relative Tectonic Activity Assessment of a Red Sea Coastal Basin between Al Farrah and Heelan, Saudi Arabia. Applied Sciences. 2024; 14(12):4980. https://doi.org/10.3390/app14124980
Chicago/Turabian StyleBashir, Bashar, and Abdullah Alsalman. 2024. "Application of Geomorphic Signatures in Relative Tectonic Activity Assessment of a Red Sea Coastal Basin between Al Farrah and Heelan, Saudi Arabia" Applied Sciences 14, no. 12: 4980. https://doi.org/10.3390/app14124980
APA StyleBashir, B., & Alsalman, A. (2024). Application of Geomorphic Signatures in Relative Tectonic Activity Assessment of a Red Sea Coastal Basin between Al Farrah and Heelan, Saudi Arabia. Applied Sciences, 14(12), 4980. https://doi.org/10.3390/app14124980