Characteristics and Genesis of Pore–Fracture System in Alkaline Lake Shale, Junggar Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Samples and Methods
- (1)
- The sample for the X-ray diffraction experiment needs to be ground into a powder sample; the particle size is 320 mesh, the total weight of the powder is about 5 g, and then the powder sample is used for the X-ray diffraction experiment;
- (2)
- The samples used for SEM observation first need to be cut into a square with a side length of about 1 cm and a thin slice with a thickness of 2–3 mm. Next, the observation surface is polished by argon ion, and then, the pore and crack characteristics of the samples are observed by using field emission scanning electron microscopy (FE-SEM);
- (3)
- The sample for the NMR experiment needs to be cut into a cylinder with a diameter of 2.5 cm and a height of 5 cm, and then the sample is saturated with water. The NMR experiment is carried out on the sample with a saturated water content.
4. Results
4.1. Petrological Characteristics
4.1.1. Mineral Composition Characteristics
4.1.2. Lithofacies Division
4.2. Pore Development Characteristics
4.2.1. Macroscopic Pore Characteristics
4.2.2. Microscopic Pore Characteristics
4.3. Fracture Development Characteristics
4.3.1. Macroscopic Fracture Characteristics
4.3.2. Microscopic Fracture Characteristics
5. Discussion
5.1. Joint Characterization of Pore–Fracture
5.2. Multi-Scale Coupling Development Model of Pores and Fractures
5.3. Mechanism of Aperture Development
5.3.1. Sedimentary Tectonic Factors
5.3.2. Diagenesis
6. Conclusions
- Based on the mineral composition and grain size variation of the Fengcheng Formation reservoir in the Mahu Depression, four lithofacies were delineated, each exhibiting distinct pore and fracture development characteristics. Siltstone interlayers displayed the most extensive porosity development, characterized by fewer macropores but abundant micro-pores, with sizes ranging from 100 nm to 4000 nm, primarily intergranular, followed by felsic shale, while clay-bearing felsic shale exhibited the poorest development, dominated by interparticle pores with the smallest pore diameters. Dolomitic felsic shale featured the most developed fractures, predominantly comprising interbedded and structural fractures, with a fracture porosity reaching 10.37%, which was significantly higher than other lithofacies. Siltstone interlayers ranked next, with felsic shale and clay-bearing felsic shale exhibiting similar fracture development patterns, albeit with lower macroscopic fracture densities; the poorest connectivity was observed in clay-bearing felsic shale.
- Among the four lithofacies, siltstone interlayers exhibited the most favorable overall pore and fracture development conditions, with pore and fracture porosities showing little discrepancy but relatively high values overall. In contrast, clay-bearing felsic shale displayed the poorest overall pore and fracture development. Dolomitic felsic shale featured the highest proportion of fractures in its pore–fracture system, boasting superior connectivity, whereas felsic shale exhibited the least developed internal fractures and contributed the lowest fracture porosity. Overall, siltstone interlayers were deemed the most favorable reservoir among the four lithofacies, with dolomitic felsic shale showing distinct advantages among the three shale types.
- The development of pores and fractures is primarily influenced by sedimentary and diagenetic factors. Sedimentation primarily occurred in semi-deep lake, shallow lake, and lakeshore subfacies. A higher carbonate mineral content during sedimentation resulted in increased shale brittleness and the enhanced propensity for fracture formation. Structural processes mainly led to the formation of large-scale macroscopic fractures, while diagenetic processes, including compaction, pressure solution, dissolution, and replacement, played a crucial role in pore formation, which his closely associated with pore genesis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.C.; Zou, W.H.; Yang, Y.M.; Duan, Y.; Shen, Y.; Luo, B.; Ni, C.; Fu, X.D.; Zhang, J.Y. Status and Prospects of Deep Oil and Gas Resources Exploration and Development Onshore China. J. Nat. Gas Geosci. 2018, 3, 11–24. [Google Scholar] [CrossRef]
- Tong, X.G.; Zhang, G.Y.; Wang, Z.M.; Wen, Z.X.; Tian, Z.J.; Wang, H.J.; Ma, F.; Wu, Y.P. Distribution and Potential of Global Oil and Gas Resources. Pet. Explor. Dev. 2018, 45, 779–789. [Google Scholar] [CrossRef]
- Wang, H.J.; Ma, F.; Tong, X.G.; Liu, Z.D.; Zhang, X.S.; Wu, Z.Z.; Li, D.H.; Wang, B.; Xie, Y.F.; Yang, L.Y. Assessment of Global Unconventional Oil and Gas Resources. Pet. Explor. Dev. 2016, 43, 925–940. [Google Scholar] [CrossRef]
- Bai, L.N.; Huang, W.B.; Qin, J.; Zhang, Z.B.; Ba, Z.C.; Bai, Z.H.; Guo, Y.B.; Li, H. Genesis and Microscopic Characteristics of Tight Reservoirs in the Fengcheng Formation, at the Southern Margin of the Mahu Sag. Energy Geosci. 2023, 4, 100162. [Google Scholar] [CrossRef]
- Lv, J.H.; Jiang, F.J.; Hu, T.; Zhang, C.X.; Huang, R.D.; Hu, M.L.; Xue, J.; Huang, L.L.; Wu, Y.P. Control of Complex Lithofacies on the Shale Oil Potential in Ancient Alkaline Lacustrine Basins: The Fengcheng Formation, Mahu Sag, Junggar Basin. Geoenergy Sci. Eng. 2023, 224, 211501. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Liao, Y.H.; Wang, J.; Xiong, Y.Q.; Wang, Y.P.; Peng, P.A. Factors Controlling the Heterogeneity of Shale Pore Structure and Shale Gas Production of the Wufeng–longmaxi Shales in the Dingshan Plunging Anticline of the Sichuan Basin, China. Int. J. Coal Geol. 2024, 282, 104434. [Google Scholar] [CrossRef]
- Zhang, C.J.; Hu, Q.H.; Yang, S.Y.; Zhang, T.; Dong, M.Z.; Sang, Q.; Ke, Y.B.; Jiang, H.Q.; Jin, Z.J. Hierarchical Cluster and Principal Component Analyses of Multi-scale Pore Structure and Shale Components in the Upper Triassic Chang 7 Member in the Ordos Basin of Northern China. J. Asian Earth Sci. 2024, 261, 106001. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Wang, G.W.; Zhang, Y.; Xi, J.H.; Huang, L.L.; Wang, S.; Zhang, Y.L.; Lai, J.; Jiang, C.Z. Logging Evaluation of Pore Structure and Reservoir Quality in Shale Oil Reservoir: The Fengcheng Formation in Mahu Sag, Junggar Basin, China. Mar. Pet. Geol. 2023, 156, 106454. [Google Scholar] [CrossRef]
- Dong, S.Q.; Zeng, L.B.; Du, X.Y.; He, J.; Sun, F.T. Lithofacies identification in carbonate reservoirs by multiple kernel Fisher discriminant analysis using conventional well logs: A case study in A oilfield, Zagros Basin, Iraq. J. Pet. Sci. Eng. 2022, 210, 110081. [Google Scholar] [CrossRef]
- Pang, X.J.; Wang, G.W.; Kuang, L.C.; Zhao, F.; Li, C.L.; Wang, C.Y.; Zhang, M.; Lai, J. Lamellation fractures in shale oil reservoirs: Recognition, prediction and their influence on oil enrichment. Mar. Pet. Geol. 2023, 148, 106032. [Google Scholar] [CrossRef]
- He, X.B.; Luo, Q.; Jiang, Z.X.; Qiu, Z.X.; Luo, J.C.; Li, Y.Y.; Deng, Y. Control of complex lithofacies on the shale oil potential in saline lacustrine basins of the Jimsar Sag, NW China: Coupling mechanisms and conceptual models. J. Asian Earth Sci. 2024, 266, 106135. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G.W.; Wang, Z.Y.; Chen, J.; Pang, X.J.; Wang, S.C.; Zhou, Z.L.; He, Z.B.; Qin, Z.Q.; Fan, X.Q. A review on pore structure characterization in tight sandstones. Earth-Sci. Rev. 2018, 177, 436–457. [Google Scholar] [CrossRef]
- Liu, X.F.; Guo, X.D.; Hong, Z.L.; Xue, X.P.; Li, S.F. Pore Structure Characteristics and Main Control Factors of Sandstone in the Jurassic Zhiluo Formation in the Northern Ordos Basin. Minerals 2023, 13, 1102. [Google Scholar] [CrossRef]
- Du, X.Y.; Jin, Z.J.; Zeng, L.B.; Liu, G.P.; He, W.J.; Ostadhassan, M.; Liang, X.P.; Yang, S.; Lu, G.Q. Characteristics and Controlling Factors of Natural Fractures in Deep Lacustrine Shale Oil Reservoirs of the Permian Fengcheng Formation in the Mahu Sag, Junggar Basin, China. J. Struct. Geol. 2023, 175, 104923. [Google Scholar] [CrossRef]
- Wu, J.B.; Yang, S.L.; Gan, B.W.; Cao, Y.S.; Zhou, W.; Kou, G.; Wang, Z.Q.; Li, Q.; Dong, W.G.; Zhao, B.B. Pore Structure and Movable Fluid Characteristics of Typical Sedimentary Lithofacies in a Tight Conglomerate Reservoir, Mahu Depression, Northwest China. ACS Omega 2021, 6, 23243–23261. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhu, R. Petrological Characteristics and Sedimentary Environment Significance of Mahu Depression of Baikouquan Conglomerate in Junggar Basin. China’s Manganese Ind. 2017, 35, 9–12. [Google Scholar] [CrossRef]
- Wang, D.Y.; Li, M.J.; Zhou, Y.; Yang, L.; Yang, Y.F.; Li, E.T.; Jin, J.; Zou, X.; Xu, B.D. Petroleum Geochemistry and Origin of Shallow-buried Saline Lacustrine Oils in the Slope Zone of the Mahu Sag, Junggar Basin, Nw China. Pet. Sci. 2023, 20, 3363–3378. [Google Scholar] [CrossRef]
- Tan, F.Q.; Ma, C.M.; Zhang, X.Y.; Zhang, J.G.; Tan, L.; Zhao, D.D.; Li, X.K.; Jing, Y.Q. Migration Rule of Crude Oil in Microscopic Pore Throat of the Low-permeability Conglomerate Reservoir in Mahu Sag, Junggar Basin. Energies 2022, 15, 7359. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Wang, Z.Z.; Guo, X.G.; Sun, Y.N.; Sun, L.; Pan, L. Characteristics of Lacustrine Dolomitic Rock Reservoir and Accumulation of Tight Oil in the Permian Fengcheng Formation, the Western Slope of the Mahu Sag, Junggar Basin, Nw China. J. Asian Earth Sci. 2019, 178, 64–80. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Ge, H.K.; Zhou, W.; Wei, Y.; Wang, B.; Liu, S.; Zhou, H.; Du, S.H. Characterization of Pores and Microfractures in Tight Conglomerate Reservoirs. Int. J. Hydrogen Energy 2022, 47, 26901–26914. [Google Scholar] [CrossRef]
- Cao, J.; Yao, S.P.; Jin, Z.J.; Hu, W.X.; Zhang, Y.J.; Wang, X.L.; Zhang, Y.Q.; Tang, Y. Petroleum migration and mixing in the northwestern Junggar Basin (NW China): Constraints from oil-bearing fluid inclusion analyses. Org. Geochem. 2006, 37, 827–846. [Google Scholar] [CrossRef]
- Wang, Y.J.; Jia, D.; Pan, J.G.; Wei, D.T.; Tang, Y.; Wang, G.D.; Wei, C.R.; Ma, D.L. Multiple-phase tectonic superposition and reworking in the Junggar Basin of northwestern China—Implications for deep-seated petroleum exploration. Aapg Bull. 2018, 102, 1489–1521. [Google Scholar] [CrossRef]
- Chen, Y.B.; Cheng, X.G.; Zhang, H.; Li, C.Y.; Ma, Y.P.; Wang, G.D. Fault characteristics and control on hydrocarbon accumulation of middle-shallow layers in the slope zone of Mahu sag, Junggar Basin, NW China. Pet. Explor. Dev. 2018, 45, 1050–1060. [Google Scholar] [CrossRef]
- Bai, B.; Liang, J.W.; Dai, C.C.; He, W.J.; Bai, Y.; Chang, X.B.; Zheng, M.; Li, H.L.; Zong, H. Diagenesis of the Permian Fengcheng Formation in the Mahu Sag, Junggar Basin, China. Appl. Sci. 2023, 13, 13186. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, L.; Liu, J.; Li, E.T.; Xian, B.Z. Genesis of Diagenetic Zeolites and Their Impact on Reservoir Formation in the Middle Permian Lower-wuerhe Formation of the Mahu Sag, Junggar Basin, Northwest China. Energy Explor. Exploit. 2020, 38, 2541–2557. [Google Scholar] [CrossRef]
- Hu, T.; Jiang, F.J.; Pang, X.Q.; Liu, Y.; Wu, G.Y.; Zhou, K.; Xiao, H.Y.; Jiang, Z.X.; Li, M.W.; Jiang, S.; et al. Identification and evaluation of shale oil micro-migration and its petroleum geological significance. Pet. Explor. Dev. 2024, 51, 114–126. [Google Scholar] [CrossRef]
- Cai, G.Y.; Gu, Y.F.; Jiang, Y.Q.; Wang, Z.L. Pore Structure and Fluid Evaluation of Deep Organic-Rich Marine Shale: A Case Study from Wufeng–Longmaxi Formation of Southern Sichuan Basin. Appl. Sci. 2023, 13, 7827. [Google Scholar] [CrossRef]
- Misch, D.; Klaver, J.; Gross, D.; Mayer-kiener, V.; Mendez-martin, F.; Schmatz, J.; Sachsenhofer, R.F. Factors Controlling Shale Microstructure and Porosity: A Case Study on Upper Visean Rudov Beds from the Ukrainian Dneiper–donets Basin. Aapg Bull. 2018, 102, 2629–2654. [Google Scholar] [CrossRef]
- Fleury, M.; Gimmi, T.; Mazurek, M. Porewater Content, Pore Structure and Water Mobility in Clays and Shales from Nmr Methods. Clays Clay Miner. 2022, 70, 417–437. [Google Scholar] [CrossRef]
- Guo, Y.C.; Fang, X.X.; Wang, H.F.; Wang, N. Mineralogy and Pore Structure of Marine–Continental Transitional Shale: A Case Study of the Upper Carboniferous Keluke Formation in the Eastern Qaidam Basin, China. Front. Earth Sci. 2022, 9, 825173. [Google Scholar] [CrossRef]
- Hazra, B.; Varma, A.K.; Bandopadhyay, A.K.; Chakravarty, S.; Buragohain, J.; Samad, S.K.; Prasad, A.K. FTIR, XRF, XRD and SEM characteristics of Permian shales, India. J. Nat. Gas Sci. Eng. 2016, 32, 239–255. [Google Scholar] [CrossRef]
- Wu, J.; Liang, C.; Hu, Z.; Yang, R.; Xie, J.; Wang, R.; Zhao, J. Sedimentation mechanisms and enrichment of organic matter in the Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin. Mar. Pet. Geol. 2019, 101, 556–565. [Google Scholar] [CrossRef]
- Wu, J.; Li, H.; Goodarzi, F.; Min, X.; Cao, W.X.; Huang, L.J.; Pan, Y.Y.; Luo, Q.Y. Geochemistry and Depositional Environment of the Mesoproterozoic Xiamaling Shales, Northern North China. J. Pet. Sci. Eng. 2022, 215, 110730. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, X.S.; Radwan, A.E.; Wang, B.H.; Wang, K.; Tian, H.Y.; Yin, S. Diagenesis of continental tight sandstone and its control on reservoir quality: A case study of the Quan 3 member of the cretaceous Quantou Formation, Fuxin uplift, Songliao Basin. Mar. Pet. Geol. 2022, 145, 105883. [Google Scholar] [CrossRef]
- Han, Z.Y.; Wang, G.W.; Wu, H.L.; Feng, Z.; Tian, H.; Xie, Y.Y.; Wu, H. Lithofacies Characteristics of Gulong Shale and Its Influence on Reservoir Physical Properties. Energies 2024, 17, 779. [Google Scholar] [CrossRef]
- Long, S.X.; Peng, Y.M.; Lu, J.; Zhu, T.; Sun, C.X.; Luo, J. Identification and Applications of Micro to Macroscale Shale Lithofacies. J. Nanosci. Nanotechnol. 2021, 21, 659–669. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Zhou, Q.; Wu, R.B.; Yang, Z.B.; Wang, Y.T.; Peng, X.H.; Liang, T. Study on Permian Sedimentary Environment and Reservoir Characteristics in Mahu Sag, Junggar Basin, China. Fresenius Environ. Bull. 2021, 30, 8886–8898. [Google Scholar]
- Dong, T.; Kang, L.; Zhang, Y.F.; Gao, Y. Pore Fractal Characteristics of Lacustrine Shale of Upper Cretaceous Nenjiang Formation from the Songliao Basin, Ne China. Appl. Sci. 2023, 13, 4295. [Google Scholar] [CrossRef]
- Jia, Z.J.; Hou, D.J.; He, J.H. Sedimentary Environment and Enrichment of Organic Matter in the Shahejie Formation, Huanghekou Depression, Bohai Bay Basin, China. Appl. Sci. 2024, 14, 4547. [Google Scholar] [CrossRef]
- Yang, Z.X.; Wang, X.Q.; Ge, H.K.; Zhu, J.X.; Wen, Y.Q. Study on Evaluation Method of Fracture Forming Ability of Shale Oil Reservoirs in Fengcheng Formation, Mahu Sag. J. Pet. Sci. Eng. 2022, 215, 110576. [Google Scholar] [CrossRef]
- Wang, S.P.; Ma, C.F.; Sun, X.; Liu, S.L. Lacustrine Shale Diagenesis—A Case Study of the Second Member of the Funing Formation in the Subei Basin. Processes 2023, 11, 2009. [Google Scholar] [CrossRef]
Depth (m) | Siliceous Minerals (%) | Carbonate Minerals (%) | Clay Minerals (%) | Others (%) | |||
---|---|---|---|---|---|---|---|
Quartz | Potash Feldspar | Plagioclase Feldspar | Calcite | Dolomite | |||
4582.60 | 28.8 | 5.0 | 20.0 | 25.6 | 4.7 | 6.3 | 9.6 |
4587.92 | 35.6 | 5.1 | 12.4 | 5.1 | 6.7 | 34.2 | 0.9 |
4591.66 | 52.0 | 2.5 | 10.3 | 0.0 | 33.5 | 0.5 | 1.2 |
4633.48 | 56.5 | 4.6 | 17.3 | 0.9 | 14.9 | 4.2 | 1.6 |
4634.72 | 23.6 | 2.9 | 8.4 | 0.0 | 42.1 | 18.0 | 5.0 |
4690.85 | 39.7 | 6.0 | 21.9 | 1.1 | 18.5 | 2.3 | 10.5 |
4709.68 | 22.9 | 7.6 | 19.9 | 10.2 | 27.0 | 2.4 | 10.0 |
4720.30 | 41.6 | 3.3 | 18.2 | 4.5 | 25.7 | 0.8 | 5.9 |
4750.69 | 46.8 | 23.2 | 15.6 | 0.7 | 9.1 | 1.1 | 3.5 |
4758.44 | 14.5 | 28.1 | 13.1 | 2.3 | 29.5 | 0.4 | 12.1 |
4764.47 | 32.5 | 13.2 | 34.2 | 2.2 | 7.4 | 2.1 | 8.4 |
4776.66 | 33.8 | 3.3 | 32.5 | 4.8 | 12.9 | 1.3 | 11.4 |
4780.51 | 19.4 | 12.0 | 24.5 | 15.7 | 18.5 | 1.0 | 8.9 |
4783.10 | 58.7 | 21.7 | 9.6 | 2.5 | 3.1 | 0.5 | 3.9 |
4820.55 | 20.9 | 11.5 | 18.4 | 0.0 | 41.0 | 1.1 | 7.1 |
4829.15 | 35.4 | 6.2 | 19.6 | 0.0 | 27.2 | 3.9 | 7.7 |
4848.60 | 14.2 | 35.4 | 0.0 | 10.0 | 22.8 | 4.7 | 12.9 |
4858.41 | 36.2 | 10.4 | 8.8 | 21.3 | 9.8 | 5.1 | 8.4 |
Lithology | Porosity% | Fracture Porosity% | Fracture Contribution Rate % | Total Porosity % |
---|---|---|---|---|
Felsic shale | 3.85 | 1.48 | 27.76 | 5.33 |
Dolomitic felsic shale | 2.57 | 10.37 | 80.14 | 12.94 |
Clay-bearing felsic shale | 1.12 | 1.5 | 57.25 | 2.62 |
Siltstone interlayers | 6.69 | 7.2 | 51.84 | 13.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Y.; Tang, X.; He, W.; Huang, L.; Jiang, Z.; Yang, L.; Lin, C. Characteristics and Genesis of Pore–Fracture System in Alkaline Lake Shale, Junggar Basin, China. Appl. Sci. 2024, 14, 5239. https://doi.org/10.3390/app14125239
Jiao Y, Tang X, He W, Huang L, Jiang Z, Yang L, Lin C. Characteristics and Genesis of Pore–Fracture System in Alkaline Lake Shale, Junggar Basin, China. Applied Sciences. 2024; 14(12):5239. https://doi.org/10.3390/app14125239
Chicago/Turabian StyleJiao, Yifan, Xianglu Tang, Wenjun He, Liliang Huang, Zhenxue Jiang, Leilei Yang, and Caihua Lin. 2024. "Characteristics and Genesis of Pore–Fracture System in Alkaline Lake Shale, Junggar Basin, China" Applied Sciences 14, no. 12: 5239. https://doi.org/10.3390/app14125239
APA StyleJiao, Y., Tang, X., He, W., Huang, L., Jiang, Z., Yang, L., & Lin, C. (2024). Characteristics and Genesis of Pore–Fracture System in Alkaline Lake Shale, Junggar Basin, China. Applied Sciences, 14(12), 5239. https://doi.org/10.3390/app14125239