Enhancing Paenibacillus sp. Cold-Active Acetyl Xylan Esterase Activity through Semi-Rational Protein Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Molecular Docking, Functional Residue Identification, and In Silico Mutant Analysis
2.3. Construction and Screening of Site-Saturation Mutagenesis Library
2.4. Overexpression, Purification, and Kinetic Characterization of Mutant PbAcEs
3. Results and Discussion
3.1. Identification of Functional Residues for SSM
3.2. Screening of Mutants with Improved Enzme Activity
3.3. Enzyme Activity and Structural Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winkler, C.K.; Schrittwieser, J.H.; Kroutil, W. Power of Biocatalysis for Organic Synthesis. ACS Cent. Sci. 2021, 7, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Bornscheuer, U.T. The fourth wave of biocatalysis is approaching. Philos. Trans. A Math. Phys. Eng. Sci. 2018, 376, 63. [Google Scholar] [CrossRef]
- Balke, K.; Beier, A.; Bornscheuer, U.T. Hot spots for the protein engineering of Baeyer-Villiger monooxygenases. Biotechnol. Adv. 2018, 36, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Gandomkar, S.; Rocha, R.; Sorgenfrei, F.A.; Montero, L.M.; Fuchs, M.; Kroutil, W. PQQ-dependent Dehydrogenase Enables One-pot Bi-enzymatic Enantio-convergent Biocatalytic Amination of Racemic. ChemCatChem 2021, 13, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.C.; Athavale, S.V.; Arnold, F.H. Combining chemistry and protein engineering for new-to-nature biocatalysis. Nat. Synth. 2022, 1, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Birch-Price, Z.; Taylor, C.J.; Ortmayer, M.; Green, A.P. Engineering enzyme activity using an expanded amino acid alphabet. Protein Eng. Des. Sel. 2023, 36, gzac013. [Google Scholar] [CrossRef] [PubMed]
- Noby, N.; Johnson, R.L.; Tyzack, J.D.; Embaby, A.M.; Saeed, H.; Hussein, A.; Khattab, S.N.; Rizkallah, P.J.; Jones, D.D. Structure-Guided Engineering of a Family IV Cold-Adapted Esterase Expands Its Substrate Range. Int. J. Mol. Sci. 2022, 23, 4703. [Google Scholar] [CrossRef]
- Ma, S.K.; Gruber, J.; Davis, C.; Newman, L.; Gray, D.; Wang, A.; Grate, J.; Huisman, G.W.; Sheldon, R.A. A green-by-design biocatalytic process for atorvastatin intermediate. Green. Chem. 2010, 12, 81–86. [Google Scholar] [CrossRef]
- Kinner, A.; Nerke, P.; Siedentop, R.; Steinmetz, T.; Classen, T.; Rosenthal, K.; Nett, M.; Pietruszka, J.; Lütz, S. Recent Advances in Biocatalysis for Drug Synthesis. Biomedicines 2022, 10, 964. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.K.; Ullah, S.; Hoque, M.Z.; Ahmad, I.; Yang, Y.H.; Bhatt, A.K.; Bhatia, S.K. Psychrophiles: A source of cold-adapted enzymes for energy efficient biotechnological industrial processes. J. Environ. Chem. Eng. 2021, 9, 104607. [Google Scholar] [CrossRef]
- Mangiagalli, M.; Brocca, S.; Orlando, M.; Lotti, M. The “cold revolution”. Present and future applications of cold-active enzymes and ice-binding proteins. New Biotechnol. 2020, 55, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Sista Kameshwar, A.K.; Qin, W. Understanding the structural and functional properties of carbohydrate esterases with a special focus on hemicellulose deacetylating acetyl xylan esterases. Mycology 2018, 9, 273–295. [Google Scholar] [CrossRef] [PubMed]
- Ning, P.; Yang, G.; Hu, L.; Sun, J.; Shi, L.; Zhou, Y.; Wang, Z.; Yang, J. Recent advances in the valorization of plant biomass. Biotechnol. Biofuels 2021, 14, 102. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Yoo, W.; Lee, C.W.; Jeong, C.S.; Shin, S.C.; Kim, H.W.; Park, H.; Kim, K.K.; Kim, T.D.; Lee, J.H. Crystal structure and functional characterization of a cold-active acetyl xylan esterase (PbAcE) from psychrophilic soil microbe Paenibacillus sp. PLoS ONE 2018, 13, e0206260. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.M.; Nascimento, A.S.; Polikarpov, I. Structural diversity of carbohydrate esterases. Biotechnol. Res. Innov. 2017, 1, 35–51. [Google Scholar] [CrossRef]
- Lin, X.; Kück, U. Cephalosporins as key lead generation beta-lactam antibiotics. Appl. Microbiol. Biotechnol. 2022, 106, 8007–8020. [Google Scholar] [CrossRef] [PubMed]
- Sonawane, V.C. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit. Rev. Biotechnol. 2006, 26, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Kuthiala, T.; Singh, G.; Rarotra, S.; Kaur, A.; Arya, S.K.; Kumar, P. Current status of xylanase for biofuel production: A review on classification and characterization. Biomass Convers. Biorefinery 2021, 13, 8773–8791. [Google Scholar] [CrossRef]
- Nandanwar, S.K.; Borkar, S.B.; Lee, J.H.; Kim, H.J. Taking Advantage of Promiscuity of Cold-Active Enzymes. Appl. Sci. 2020, 10, 8128. [Google Scholar] [CrossRef]
- Ma, X.; Deng, S.; Su, E.; Wei, D. One-pot enzymatic production of deacetyl-7-aminocephalosporanic acid from cephalosporin C via immobilized cephalosporin C acylase and deacetylase. Biochem. Eng. J. 2015, 95, 1–8. [Google Scholar] [CrossRef]
- Yan, Y.; Tao, H.; He, J.; Huang, S.Y. The HDOCK server for integrated protein-protein docking. Nat. Protoc. 2020, 15, 1829–1852. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, D.; Zhou, P.; Li, B.; Huang, S.Y. HDOCK: A web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res. 2017, 45, W365–W373. [Google Scholar] [CrossRef] [PubMed]
- Sumbalova, L.; Stourac, J.; Martinek, T.; Bednar, D.; Damborsky, J. HotSpot Wizard 3.0: Web server for automated design of mutations and smart libraries based on sequence input information. Nucleic Acids Res. 2018, 46, W356–W362. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.H.; Pires, D.E.; Ascher, D.B. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018, 46, W350–W355. [Google Scholar] [CrossRef] [PubMed]
- DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Science LLC.: San Carlos, CA, USA, 2002. [Google Scholar]
- Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res. 2018, 46, W374–W379. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; Sambrook, J. Molecular cloning. In A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.; Forli, S.; Goodsell, D.S.; Olson, A.J. Covalent docking using autodock: Two-point attractor and flexible side chain methods. Protein Sci. 2016, 25, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Moharana, T.R.; Rao, N.M. Substrate structure and computation guided engineering of a lipase for omega-3 fatty acid selectivity. PLoS ONE 2020, 15, e0231177. [Google Scholar] [CrossRef] [PubMed]
- Ury, B.; Potelle, S.; Caligiore, F.; Whorton, M.R.; Bommer, G.T. The promiscuous binding pocket of SLC35A1 ensures redundant transport of CDP-ribitol to the Golgi. J. Biol. Chem. 2021, 296, 100789. [Google Scholar] [CrossRef] [PubMed]
- Vincent, F.; Charnock, S.J.; Verschueren, K.H.; Turkenburg, J.P.; Scott, D.J.; Offen, W.A.; Roberts, S.; Pell, G.; Gilbert, H.J.; Davies, G.J. Multifunctional xylooligosaccharide/cephalosporin C deacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9 Å resolution. J. Mol. Biol. 2003, 330, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Levisson, M.; Han, G.W.; Deller, M.C.; Xu, Q.; Biely, P.; Hendriks, S.; Ten Eyck, L.F.; Flensburg, C.; Roversi, P.; Miller, M.D. Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. Proteins Struct. Funct. Bioinform. 2012, 80, 1545–1559. [Google Scholar] [CrossRef] [PubMed]
- Montoro-García, S.; Gil-Ortiz, F.; García-Carmona, F.; Polo, L.M.; Rubio, V.; Sánchez-Ferrer, Á. The crystal structure of the cephalosporin deacetylating enzyme acetyl xylan esterase bound to paraoxon explains the low sensitivity of this serine hydrolase to organophosphate inactivation. Biochem. J. 2011, 436, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Manoj, N. Crystal structure of Thermotoga maritima acetyl esterase complex with a substrate analog: Insights into the distinctive substrate specificity in the CE7 carbohydrate esterase family. Biochem. Biophys. Res. Commun. 2016, 476, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Kim, J.H.; Park, B.S.; Kim, B.-G. Solubilization and Iterative Saturation Mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency. Biotechnol. Bioeng. 2016, 113, 1666–1675. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Choi, Y.H.; Kim, M.W.; Park, B.G.; Kim, E.-J.; Kim, J.Y.; Kim, J.H.; Kim, B.-G. Enhancing biosynthesis of 2′-Fucosyllactose in Escherichia coli through engineering lactose operon for lactose transport and α-1,2-Fucosyltransferase for solubility. Biotechnol. Bioeng. 2022, 119, 1264–1277. [Google Scholar] [CrossRef] [PubMed]
- Garrett, J.B.; Kretz, K.A.; O’Donoghue, E.; Kerovuo, J.; Kim, W.; Barton, N.R.; Hazlewood, G.P.; Short, J.M.; Robertson, D.E.; Gray, K.A. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Appl. Environ. Microbiol. 2004, 70, 3041–3046. [Google Scholar] [CrossRef] [PubMed]
- Thornton, I.N.a.A.D.F.a.J.M. Protein promiscuity and its implications for biotechnology. Nat. Biotechnol. 2009, 27, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Hedge, M.K.; Gehring, A.M.; Adkins, C.T.; Weston, L.A.; Lavis, L.D.; Johnson, R.J. The structural basis for the narrow substrate specificity of an acetyl esterase from Thermotoga maritima. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2012, 1824, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Huang, X.; Li, Q.; Zhu, Y. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity. Appl. Microbiol. Biotechnol. 2017, 101, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T.; Carballeira, J.D. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat. Protoc. 2007, 2, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Rocha, C.G.; Hoebenreich, S.; Reetz, M.T. Iterative Saturation Mutagenesis: A Powerful Approach to Engineer Proteins by Systematically Simulating Darwinian Evolution. In Directed Evolution Library Creation: Methods and Protocols; Gillam, E.M.J., Copp, J.N., Ackerley, D., Eds.; Springer: New York, NY, USA, 2014; pp. 103–128. [Google Scholar]
Residues | Substrates 1 | Location/Function | Mutability 2 |
---|---|---|---|
Lys91 | GTB, GTH | S1 | 7 |
Tyr92 | GTB, GTH | S1 | - |
His93 | GTB, GTH | S1 | 5 |
Gly94 | GTB, GTH | Oxyanion hole | - |
Tyr95 | All | Oxyanion hole | - |
Ser96 | LA, GTB, GTH | Oxyanion hole | - |
Gly97 | GTH | Gate keeper | 6 |
Asn98 | GTH | Gate keeper | 6 |
Glu104 | GTH | Gate keeper | - |
Tyr182 | GTH | S1 | 9 |
Gly184 | All | Active site | - |
Gln186 | All | Oxyanion hole | - |
Phe210 | All | S0 | - |
Pro225 | All | S0 | 5 |
Thr276 | All | S0 | 5 |
Cys277 | All | S0 | - |
His303 | TA, LA, GTB | Catalytic triad | - |
Enzyme | kcat (s−1) | KM (mM) | kcat/KM (mM−1s−1) |
---|---|---|---|
Wild type | 52.5 ± 0.9 | 0.19 ± 0.01 | 282.3 |
K91A | 53.5± 1.1 | 0.17 ± 0.01 | 308.8 |
K91H | 55 ± 0.8 | 0.16 ± 0.02 | 343.8 |
H93P | 52.3 ± 0.9 | 0.18 ± 0.01 | 288.9 |
Y182E | 55 ± 0.9 | 0.17 ± 0.01 | 323.1 |
Y182V | 54 ± 0.9 | 0.16 ± 0.01 | 337.1 |
Y182M | 52.5 ± 1.2 | 0.16 ± 0.01 | 328.1 |
Y182T | 52.5 ± 1.0 | 0.16 ± 0.01 | 328.1 |
Y182W | 55 ± 1.5 | 0.16 ± 0.01 | 343.8 |
K91A/H93P | 50.5 ± 0.9 | 0.17 ± 0.02 | 297.1 |
K91H/H93P | 51.4 ± 1.0 | 0.17 ± 0.01 | 302.4 |
K91A/H93P/Y182E | 50.3 ± 0.7 | 0.16 ± 0.01 | 312.1 |
K91A/H93P/Y182V | 52.5 ± 0.7 | 0.17 ± 0.01 | 308.1 |
K91A/H93P/Y182M | 52.5 ± 0.9 | 0.17 ± 0.01 | 308.7 |
K91A/H93P/Y182T | 54.3 ± 1.2 | 0.17 ± 0.01 | 319.3 |
K91A/H93P/Y182W | 51.2 ± 1.1 | 0.17 ± 0.01 | 301.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, K.; Nandanwar, S.; Jeon, S.Y.; Yang, G.R.; Liu, L.; Oh, H.-M.; Kim, H.J. Enhancing Paenibacillus sp. Cold-Active Acetyl Xylan Esterase Activity through Semi-Rational Protein Engineering. Appl. Sci. 2024, 14, 5546. https://doi.org/10.3390/app14135546
Ji K, Nandanwar S, Jeon SY, Yang GR, Liu L, Oh H-M, Kim HJ. Enhancing Paenibacillus sp. Cold-Active Acetyl Xylan Esterase Activity through Semi-Rational Protein Engineering. Applied Sciences. 2024; 14(13):5546. https://doi.org/10.3390/app14135546
Chicago/Turabian StyleJi, Keunho, Sondavid Nandanwar, So Yeon Jeon, Gyu Ri Yang, Lixiao Liu, Hyun-Myung Oh, and Hak Jun Kim. 2024. "Enhancing Paenibacillus sp. Cold-Active Acetyl Xylan Esterase Activity through Semi-Rational Protein Engineering" Applied Sciences 14, no. 13: 5546. https://doi.org/10.3390/app14135546
APA StyleJi, K., Nandanwar, S., Jeon, S. Y., Yang, G. R., Liu, L., Oh, H. -M., & Kim, H. J. (2024). Enhancing Paenibacillus sp. Cold-Active Acetyl Xylan Esterase Activity through Semi-Rational Protein Engineering. Applied Sciences, 14(13), 5546. https://doi.org/10.3390/app14135546