Fast Assessment of Quality of Water Containing Inorganic Pollutants Using Laser Biospeckles in Microbioassay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organism Breeding
2.2. Sample Preparation
2.2.1. Sample Preparation for Rheology Study
2.2.2. Sample Preparation for Water Toxicity Assessment Study
2.3. Sample Cell
2.4. Experimental Setup
2.5. Statistical Analysis
2.6. Biospeckle Cross-Correlation Method
3. Results and Discussion
3.1. Indirect Measurement of Viscosity
3.2. Detection of Water Toxicity
3.2.1. Fe as a Water Toxicity
3.2.2. Zn as Water Toxicity
3.3. Exposure Dependency Behavior of Microorganisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duruibe, J.O.; Ogwuegbu, M.; Egwurugwu, J. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Kar, D.; Sur, P.; Mandai, S.; Saha, T.; Kole, R. Assessment of heavy metal pollution in surface water. Int. J. Environ. Sci. Technol. 2008, 5, 119–124. [Google Scholar] [CrossRef]
- Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.-S.; Wu, Y.-S.; Nagandran, S.; Batumalaie, K. Microplastic sources, formation, toxicity and remediation: A review. Environ. Chem. Lett. 2023, 21, 2129–2169. [Google Scholar] [CrossRef] [PubMed]
- Häder, D.-P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef] [PubMed]
- Stauber, J.; Davies, C. Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environ. Rev. 2000, 8, 255–301. [Google Scholar] [CrossRef]
- Rizzo, L. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res. 2011, 45, 4311–4340. [Google Scholar] [CrossRef]
- Kolkman, A.; Schriks, M.; Brand, W.; Bäuerlein, P.S.; van der Kooi, M.M.; van Doorn, R.H.; Emke, E.; Reus, A.A.; van der Linden, S.C.; de Voogt, P. Sample preparation for combined chemical analysis and in vitro bioassay application in water quality assessment. Environ. Toxicol. Pharmacol. 2013, 36, 1291–1303. [Google Scholar] [CrossRef]
- Hussain, F.; Eom, H.; Toor, U.A.; Lee, C.S.; Oh, S.-E. Rapid assessment of heavy metal-induced toxicity in water using micro-algal bioassay based on photosynthetic oxygen evolution. Environ. Eng. Res. 2021, 26, 200391. [Google Scholar] [CrossRef]
- Hanada, Y.; Sugioka, K.; Kawano, H.; Ishikawa, I.S.; Miyawaki, A.; Midorikawa, K. Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed. Microdevices 2008, 10, 403–410. [Google Scholar] [CrossRef]
- Devi, A.; Kadono, H.; Rajagopalan, U.M. Fast and reliable micro-bioassay technique based on biospeckle. In Proceedings of the Optical Interactions with Tissue and Cells XXXIV, San Francisco, CA, USA, 28–29 January 2023; pp. 89–96. [Google Scholar]
- Goodman, J.W. Statistical properties of laser speckle patterns. In Laser Speckle and Related Phenomena; Springer: Berlin/Heidelberg, Germany, 1975; pp. 9–75. [Google Scholar]
- Endo, D.; Kono, T.; Koike, Y.; Kadono, H.; Yamada, J.; Rajagopalan, U.M. Application of laser speckles and deep learning in discriminating between the size and concentrations of supermicroplastics. Opt. Contin. 2022, 1, 2259–2273. [Google Scholar] [CrossRef]
- Helmer, R.; Hespanhol, I. Water Pollution Control: A Guide to the Use of Water Quality Management Principles; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar] [PubMed]
- Au, L.; Shu, J. The Relationship between Kinematic Viscosity and the Swimming Speeds of Paramecium aurelia, Tetrahymena spp., and Euglena spp.; University of British Columbia: Vancouver, BC, Canada, 2013. [Google Scholar]
- Shunmugam, A.P.; Subramanian, G.; Fernandez, J.G. Measurements of the swimming speeds of motile microorganisms using object tracking and their correlation with water pollution and rheology levels. Sci. Rep. 2021, 11, 11821. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.V.; Srikanth, K.; Arepalli, S.; Gunda, V. Toxic effects of acephate on Paramecium caudatum with special emphasis on morphology, behaviour, and generation time. Pestic. Biochem. Physiol. 2006, 86, 131–137. [Google Scholar]
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Aschner, M.; Lei, X.G.; Gritsenko, V.A.; Santamaria, A.; Alekseenko, S.I.; Prakash, N.T.; Chang, J.S.; Sizova, E.A.; Chao, J.C.J.; et al. Gut Microbiota as a Mediator of Essential and Toxic Effects of Zinc in the Intestines and Other Tissues. Int. J. Mol. Sci. 2021, 22, 13074. (In English) [Google Scholar] [CrossRef] [PubMed]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Kosman, D.J. Molecular mechanisms of iron uptake in fungi. Mol. Microbiol. 2003, 47, 1185–1197. (In English) [Google Scholar] [CrossRef] [PubMed]
- Rout, G.R.; Sahoo, S. Role of iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- Panja, S.; Chaudhuri, D.; Ghate, N.B.; Mandal, N. Phytochemical profile of a microalgae Euglena tuba and its hepatoprotective effect against iron-induced liver damage in Swiss albino mice. J. Appl. Microbiol. 2014, 117, 1773–1786. [Google Scholar] [CrossRef]
- Foong, C.P.; Higuchi-Takeuchi, M.; Numata, K. Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition. PLoS ONE 2019, 14, e0212654. [Google Scholar] [CrossRef]
- Mendoza-Cozatl, D.; Devars, S.; Loza-Tavera, H.; Moreno-Sánchez, R. Cadmium accumulation in the chloroplast of Euglena gracilis. Physiol. Plant. 2002, 115, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Gekeler, W.; Grill, E.; Winnacker, E.-L.; Zenk, M.H. Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch. Microbiol. 1988, 150, 197–202. [Google Scholar] [CrossRef]
- Madlung, A.; Comai, L. The Effect of Stress on Genome Regulation and Structure. Ann. Bot. 2004, 94, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Omar, H.H. Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Int. Biodeterior. Biodegrad. 2002, 50, 95–100. [Google Scholar] [CrossRef]
- Pradhan, B.; Bhuyan, P.P.; Nayak, R.; Patra, S.; Behera, C.; Ki, J.S.; Ragusa, A.; Lukatkin, A.S.; Jena, M. Microalgal Phycoremediation: A Glimpse into a Sustainable Environment. Toxics 2022, 10, 525. (In English) [Google Scholar] [CrossRef]
- Javanbakht, V.; Alavi, S.A.; Zilouei, H. Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci. Technol. 2014, 69, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Twining, B.S.; Baines, S.B. The trace metal composition of marine phytoplankton. Ann. Rev. Mar. Sci. 2013, 5, 191–215. (In English) [Google Scholar] [CrossRef] [PubMed]
- Laub, M.T.; Goulian, M. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 2007, 41, 121–145. [Google Scholar] [CrossRef] [PubMed]
- Prabhakaran, P.; Ashraf, M.A.; Aqma, W.S. Microbial stress response to heavy metals in the environment. RSC Adv. 2016, 6, 109862–109877. [Google Scholar] [CrossRef]
- Novosel, N.; Kasum, D.; Žutinić, P.; Legović, T.; Ivošević DeNardis, N. Short-term effect of cadmium on the motility of three flagellated algal species. J. Appl. Phycol. 2020, 32, 4057–4067. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devi, A.; Kadono, H.; Rajagopalan, U.M. Fast Assessment of Quality of Water Containing Inorganic Pollutants Using Laser Biospeckles in Microbioassay. Appl. Sci. 2024, 14, 5558. https://doi.org/10.3390/app14135558
Devi A, Kadono H, Rajagopalan UM. Fast Assessment of Quality of Water Containing Inorganic Pollutants Using Laser Biospeckles in Microbioassay. Applied Sciences. 2024; 14(13):5558. https://doi.org/10.3390/app14135558
Chicago/Turabian StyleDevi, Arti, Hirofumi Kadono, and Uma Maheshwari Rajagopalan. 2024. "Fast Assessment of Quality of Water Containing Inorganic Pollutants Using Laser Biospeckles in Microbioassay" Applied Sciences 14, no. 13: 5558. https://doi.org/10.3390/app14135558
APA StyleDevi, A., Kadono, H., & Rajagopalan, U. M. (2024). Fast Assessment of Quality of Water Containing Inorganic Pollutants Using Laser Biospeckles in Microbioassay. Applied Sciences, 14(13), 5558. https://doi.org/10.3390/app14135558