Physiological, Mechanical, and Perceptual Responses to Comparing 7.5% and 10% Body Mass Load during the Cycling Sprint Interval Exercise in Physically Active Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Blood Measurements
2.4. Body Temperature
2.5. Rating of Perceived Exertion
2.6. Cycling Sprint Interval Exercise (SIE)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trost, S.G.; Owen, N.; Bauman, A.E.; Sallis, J.F.; Brown, W. Correlates of adults’ participation in physical activity: Review and update. Med. Sci. Sports Exerc. 2002, 34, 1996–2001. [Google Scholar] [CrossRef] [PubMed]
- Hazell, T.J.; MacPherson, R.E.; Gravelle, B.M.; Lemon, P.W. 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur. J. Appl. Physiol. 2010, 110, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Sloth, M.; Sloth, D.; Overgaard, K.; Dalgas, U. Effects of sprint interval training on VO2max and aerobic exercise performance: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2013, 23, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Batacan, R.B.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Vollaard, N.B.; Metcalfe, R.S. Research into the health benefits of sprint interval training should focus on protocols with fewer and shorter sprints. Sports Med. 2017, 47, 2443–2451. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Howarth, K.R.; Phillips, S.M.; Rakobowchuk, M.; MacDonald, M.J.; McGee, S.L.; Gibala, M.J. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol. 2008, 586, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Parolin, M.L.; Chesley, A.; Matsos, M.P.; Spriet, L.L.; Jones, N.L.; Heigenhauser, G.J. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am. J. Physiol. Endocrinol. Metab. 1999, 5, E890–E900. [Google Scholar] [CrossRef]
- Biddle, S.J.; Batterham, A.M. High-intensity interval exercise training for public health: A big HIT or shall we HIT it on the head? Int. J. Behav. Nutr. Phys. Act. IJBNPA 2015, 12, 95. [Google Scholar] [CrossRef]
- Boullosa, D.; Dragutinovic, B.; Feuerbacher, J.F.; Benítez-Flores, S.; Coyle, E.F.; Schumann, M. Effects of short sprint intervaltraining on aerobic and anaerobic indices: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2022, 32, 810–820. [Google Scholar] [CrossRef]
- Fiorenza, M.; Hostrup, M.; Gunnarsson, T.P.; Shirai, Y.; Schena, F.; Iaia, F.M.; Bangsbo, J. Neuromuscular fatigue and metabolism during high-intensity intermittent exercise. Med. Sci. Sports Exerc. 2019, 51, 1642–1652. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Flores, S.; de Sousa, A.F.M.; da Cunha Totó, E.C.; Rosa, T.S.; Del Rosso, S.; Foster, C.; Boullosa, D.A. Shorter sprints elicit greater cardiorespiratory and mechanical responses with less fatigue during time-matched sprint interval training (SIT) sessions. Kinesiology 2018, 50, 137–148. [Google Scholar] [CrossRef]
- McKie, G.L.; Islam, H.; Townsend, L.K.; Robertson-Wilson, J.; Eys, M.; Hazell, T.J. Modified sprint interval training protocols: Physiological and psychological responses to 4 weeks of training. Appl. Physiol. Nutr. Metab. 2018, 43, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Olek, R.A.; Kujach, S.; Ziemann, E.; Ziolkowski, W.; Waz, P.; Laskowski, R. Adaptive changes after 2 weeks of 10-s sprint interval training with various recovery times. Front. Physiol. 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed]
- Nalçakan, G.R.; Songsorn, P.; Fitzpatrick, B.L.; Yüzbasioglu, Y.; Brick, N.E.; Metcalfe, R.S.; Vollaard, N.B. Decreasing sprint duration from 20 to 10 s during reduced-exertion high-intensity interval training (REHIT) attenuates the increase in maximal aerobic capacity but has no effect on affective and perceptual responses. Appl. Physiol. Nutr. Metab. 2018, 43, 338–344. [Google Scholar] [CrossRef]
- Harnish, C.R.; Sabo, R.T. Comparison of two different sprint interval training work-to-rest ratios on acute inflammatory responses. Sports Med.-Open 2016, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Kavaliauskas, M.; Aspe, R.R.; Babraj, J. High-intensity cycling training: The effect of work-to-rest intervals on running performance measures. J. Strength Cond. Res. 2015, 29, 2229–2236. [Google Scholar] [CrossRef] [PubMed]
- Islam, H.; Townsend, L.K.; Hazell, T.J. Modified sprint interval training protocols. Part I. Physiological responses. Appl. Physiol. Nutr. Metab. 2016, 42, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Danek, N.; Smolarek, M.; Michalik, K.; Zatoń, M. Comparison of acute responses to two different cycling sprint interval exercise protocols with different recovery durations. Int. J. Environ. Res. Public Health 2020, 17, 1026. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; MacDonald, M.J.; Hawley, J.A. Physiological adaptations to low volume, high intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- Broatch, J.R.; Petersen, A.; Bishop, D.J. Cold-water immersion following sprint interval training does not alter endurance signaling pathways or training adaptations in human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. AM 2017, 313, R372–R384. [Google Scholar] [CrossRef] [PubMed]
- Bachero-Mena, B.; González-Badillo, J.J. Effects of resisted sprint training on acceleration with three different loads accounting for 5, 12.5, and 20% of body mass. J. Strength Cond. Res. 2014, 28, 2954–2960. [Google Scholar] [CrossRef] [PubMed]
- Michalik, K.; Danek, N.; Zatoń, M. Assessment of the physical fitness of road cyclists in the step and ramp protocols of the incremental test. J. Sports Med. Phys. Fit. 2019, 59, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Hebisz, R.; Hebisz, P.; Borkowski, J.; Wierzbicka-Damska, I.; Zatoń, M. Relationship Between the Skin Surface Temperature Changes During Sprint Interval Testing Protocol and the Aerobic Capacity in Well-Trained Cyclists. Physiol. Res. 2019, 68, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Glaister, M.; Howatson, G.; Pattison, J.R.; McInnes, G. The reliability and validity of fatigue measures during multiple-sprint work: An issue revisited. J. Strength Cond. Res. 2008, 22, 1597–1601. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; LEA: Hillsdale, NJ, USA, 1998. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Abington, UK, 2013. [Google Scholar]
- Üçok, K.; Gökbel, H.; Okudan, N. The Load of the Wingate Test: According to the Body Weight or Lean Body Mass? Eur. J. Gen. Med. 2005, 2, 10–13. [Google Scholar] [CrossRef]
- Balsom, P.D.; Gaitanos, G.C.; Ekblom, B.; Sjödin, B. Reduced oxygen availability during high intensity intermittent exercise impairs performance. Acta Physiol. 1994, 152, 279–285. [Google Scholar] [CrossRef]
- Billaut, F.; Buchheit, M. Repeated sprint performance and vastus lateralis oxygenation: Effect of limited O2 availability. Scand. J. Med. Sci. Sports 2013, 23, e185–e193. [Google Scholar] [CrossRef]
- Dupont, G.; Millet, G.P.; Guinhouya, C.; Berthoin, S. Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur. J. Appl. Physiol. 2005, 95, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol. 1996, 80, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Sargeant, A.J.; Dolan, P.; Young, A. Optimal velocity for maximal short-term (anaerobic) power output in cycling. Int. J. Sports Med. 1984, 5, S124–S125. [Google Scholar] [CrossRef]
- Creer, A.R.; Ricard, M.D.; Conlee, R.K.; Hoyt, G.L.; Parcell, A.C. Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists. Int. J. Sports Med. 2004, 25, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, I.; Esbjörnsson, M.O.N.A.; Sylven, C.; Holm, I.; Jansson, E. Sprint training effects on muscle myoglobin, enzymes, fiber types, and blood lactate. Med. Sci. Sports Exerc. 1987, 19, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Inbar, O.; Bar-Or, O.; Skinner, J. The Wingate Anaerobic Test; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Dotan, R.; Bar-Or, O. Load optimization for the Wingate anaerobic test. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 51, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, H.; Rouis, M.; Coudrat, L.; Attiogbé, E.; Vandewalle, H.; Driss, T. Effects of load on Wingate test performances and reliability. J. Strength Cond. Res. 2014, 28, 3462–3468. [Google Scholar] [CrossRef]
- Sargeant, A.J.; Rouleau, M.Y.; Sutton, J.R.; Jones, N.L. Ventilation in exercise studied with circulatory occlusion. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 50, 718–723. [Google Scholar] [CrossRef]
Values | (SD) | 95%CI |
---|---|---|
Body height (m) | 1.81 (0.08) | 1.76–1.86 |
Body mass (kg) | 77.9 (10.6) | 71.1–84.6 |
Physical activity (h∙week−1) | 7.8 (1.6) | 6.7–8.8 |
SBP (mm Hg) | 123 (10) | 117–130 |
DBP (mm Hg) | 70 (7) | 65–75 |
RBC (106∙mm−3) | 5.1 (0.5) | 4.8–5.4 |
HGB (gL∙dL−1) | 15.2 (0.8) | 14.7–15.7 |
Hct (%) | 44.2 (3.1) | 42.3–46.2 |
VO2max(ml∙kg−1∙min−1) | 52.4 (7.8) | 47.4–57.4 |
MAP (W) | 341.0 (41.4) | 314.6–367.3 |
VEmax (L∙min−1) | 148.7 (21.1) | 135.3–162.1 |
VTmax (L) | 3.4 (0.5) | 3.1–3.7 |
RFmax (breath∙min−1) | 50.8 (7.6) | 46.0–55.6 |
HRmax (beats∙min−1) | 193 (7) | 189–198 |
pH (−log[H+]) | 7.2 (0.1) | 7.2–7.3 |
La− (mmol∙L−1) | 12.8 (1.8) | 11.6–13.9 |
Values | SIE7.5% | SIE10% | t-Test | ES |
---|---|---|---|---|
VEpeak (L∙min−1) | 154.6 ± 5.3 | 154.8 ± 9.2 | −0.03 | 0.1 |
VEmean (L∙min−1) | 79.4 ± 7.9 | 75.4 ± 7.9 | 1.2 | −0.5 |
VO2peak (mL∙kg−1∙min−1) | 47.7 ± 6.0 | 47.4 ± 6.0 | 0.1 | −0.1 |
VO2mean (mL∙kg−1∙min−1) | 29.1 ± 2.3 | 26.0 * ± 1.4 | 3.9 | −1.6 |
VTpeak (L) | 3.7 ± 0.7 | 3.4 ± 0.3 | 1.6 | −0.6 |
VTmean (L) | 2.5 ± 0.4 | 2.3 ± 0.4 | 1.6 | −0.5 |
HRpeak (beats·min−1) | 186 ± 6 | 188 ± 6 | −1.6 | 0.3 |
HRmean (beats·min−1) | 152 ± 10 | 150 * ± 10 | 2.4 | −0.2 |
T (°C) | 36.1 ± 0.3 | 36.2 ± 0.4 | −0.8 | 0.3 |
La− mean (mmol∙L−1) | 12.6 ± 1.0 | 13.1 ± 2.1 | −1.3 | 1.2 |
RPEmean (AU) | 19 ± 1 | 17 ± 2 * | 3.1 | −1.3 |
Values | SIE7.5% | SIE10% | t-Test | ES |
---|---|---|---|---|
Wtot (kJ) | 7.0 (1.2) | 7.5 (0.6) | −1.4 | 0.5 |
WtotIS (kJ) | 7.0 (1.2) | 7.7 (0.7) | −1.7 | 0.7 |
WtotIIS (kJ) | 6.9 (1.3) | 7.2 (0.6) | −0.9 | 0.3 |
FIIS (%) | 7.3 (2.5) | 10.6 * (2.6) | −3.4 | 1.3 |
FIIIS (%) | 8.7 (3.1) | 10.3 (5.0) | −1.1 | 0.4 |
tPPOIS (s) | 3.4 (0.6) | 3.5 (0.5) | −0.5 | 0.2 |
tPPOIIS (s) | 3.9 (0.6) | 3.7 * (0.5) | 0.7 | −0.4 |
Rpm (repetition∙min−1) | 145.3 (5.5) | 147.2 (7.4) | −0.6 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danek, N.; Hebisz, P.; Zatoń, M. Physiological, Mechanical, and Perceptual Responses to Comparing 7.5% and 10% Body Mass Load during the Cycling Sprint Interval Exercise in Physically Active Men. Appl. Sci. 2024, 14, 5584. https://doi.org/10.3390/app14135584
Danek N, Hebisz P, Zatoń M. Physiological, Mechanical, and Perceptual Responses to Comparing 7.5% and 10% Body Mass Load during the Cycling Sprint Interval Exercise in Physically Active Men. Applied Sciences. 2024; 14(13):5584. https://doi.org/10.3390/app14135584
Chicago/Turabian StyleDanek, Natalia, Paulina Hebisz, and Marek Zatoń. 2024. "Physiological, Mechanical, and Perceptual Responses to Comparing 7.5% and 10% Body Mass Load during the Cycling Sprint Interval Exercise in Physically Active Men" Applied Sciences 14, no. 13: 5584. https://doi.org/10.3390/app14135584
APA StyleDanek, N., Hebisz, P., & Zatoń, M. (2024). Physiological, Mechanical, and Perceptual Responses to Comparing 7.5% and 10% Body Mass Load during the Cycling Sprint Interval Exercise in Physically Active Men. Applied Sciences, 14(13), 5584. https://doi.org/10.3390/app14135584