Finite Element Model Updating Method for Radio Telescope Antenna Based on Parameter Optimization with Surrogate Model
Abstract
:1. Introduction
2. Finite Element Analysis of Antenna Structures
3. Updating Method for FE Model of Antenna
- (1)
- Parameter sensitivity analysis
- (a)
- The antenna’s original FE model is established based on the design information.
- (b)
- The model input parameters are set to the elastic modulus of d different BUS bars. The output response is set as the RMS of the displacement of the BUS upper chord nodes.
- (c)
- The Latin hypercube sampling (LHS) experimental design method [21] is utilized to obtain p sets of random input parameter samples. Then, the FE model is employed to acquire p output responses.
- (d)
- The RBF surrogate model is obtained by using p sets of input and output responses, and it is used to replace the FE model for the parameter sensitivity analysis.
- (e)
- The sensitivity of these d input parameters to the output response is calculated using the RBF model and combined with the Sobol method to obtain d’ sensitive parameters.
- (2)
- Parameter optimization
- (a)
- The original FE model input parameters are set to the d’ sensitivity parameters obtained by sensitivity analysis, and the output response is the RMS of the relative displacement error between the antenna’s nodes and the original FE model’s corresponding nodes.
- (b)
- The Latin hypercube sampling experimental design method is utilized to obtain q sets of random input parameter samples. Then, the FE model is employed to acquire q output responses.
- (c)
- The RBF surrogate model is obtained by using q sets of input and output responses, and it is used to replace the FE model for the parameter optimization.
- (d)
- The d’ parameters were optimized using an agent model and combined with a genetic algorithm.
- (e)
- The optimized parameters are used in place of the original parameters in the FE model to calculate the RMS of the BUS upper chord nodes’ half-path length errors, which is compared with the RMS of the antenna primary reflector surface nodes’ half-path length errors to test the model updating effect [22].
3.1. Establishment of Original FE Model and Analysis of Model Error
3.2. RBF Surrogate Model
3.3. Parameter Sensitivity Analysis
3.4. Parameter Optimization
4. Simulation Experiment Example of FE Model Updating of Antenna
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahmat-Samii, Y.; Haupt, R. Reflector antenna developments: A perspective on the past, present and future. IEEE Antennas Propag. Mag. 2015, 57, 85–95. [Google Scholar] [CrossRef]
- Attoli, A.; Stochino, F.; Buffa, F.; Poppi, S.; Serra, G.; Sanna, G.; Cazzani, A. Sardinia Radio Telescope structural behavior under solar thermal load. Structures 2022, 39, 901–916. [Google Scholar] [CrossRef]
- Fu, L.B.; Liu, J.J.; Yan, W.; Kong, D.Q.; Ren, X.; Liu, C.D.; Zhang, H.B. Gravitational Deformation Measurement Method for the Main Reflector and Sub-reflector of the 70 m Antenna by Laser Scanner. Res. Astron. Astrophys. 2022, 22, 095001. [Google Scholar] [CrossRef]
- Nie, R.; He, B.; Yan, S.; Ma, X. Optimization design method for mesh reflector antennas considering the truss deformation and thermal effects. Eng. Struct. 2020, 208, 110253. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Ying, K.; Xu, Q.; Wang, N.; Duan, B.; Wei, G.; Lan, X.; Duan, Y. Active surface compensation for large radio telescope antennas. Int. J. Antennas Propag. 2018, 2018, 3903412. [Google Scholar] [CrossRef]
- Ereiz, S.; Duvnjak, I.; Jiménez-Alonso, J.F. Review of finite element model updating methods for structural applications. Structures 2022, 41, 684–723. [Google Scholar] [CrossRef]
- Chan, T.C.; Ullah, A.; Roy, B.; Chang, S.L. Finite element analysis and structure optimization of a gantry-type high-precision machine tool. Sci. Rep. 2023, 13, 13006. [Google Scholar] [CrossRef]
- Wu, D.; Ma, X.; Chen, J.; Chen, C.; Zhao, J.; Lin, K. Multiobjective Optimization Design of Truss Antenna. Int. J. Aerosp. Eng. 2022, 2022, 6125831. [Google Scholar] [CrossRef]
- Jalalpour, M.; Igusa, T.; Guest, J.K. Optimal design of trusses with geometric imperfections: Accounting for global instability. Int. J. Solids Struct. 2011, 48, 3011–3019. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, L.; Xiang, B.; Wang, W.; Xu, Q.; Jiang, L.; Wang, N.; Duan, B. Development of active surface technology of large radio telescope antennas. Sci. Sin. Phys. Mech. Astron. 2017, 47, 059503. (In Chinese) [Google Scholar] [CrossRef]
- Yang, C.; Ouyang, H. A novel load-dependent sensor placement method for model updating based on time-dependent reliability optimization considering multi-source uncertainties. Mech. Syst. Signal Process. 2022, 165, 108386. [Google Scholar] [CrossRef]
- Mottershead, J.E.; Link, M.; Friswell, M.I. The sensitivity method in finite element model updating: A tutorial. Mech. Syst. Signal Process. 2011, 25, 2275–2296. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, L.; Chen, L.; Ou, J. Structural finite element model updating by using response surfaces and radial basis functions. Adv. Struct. Eng. 2016, 19, 1446–1462. [Google Scholar] [CrossRef]
- Jang, J.; Smyth, A.W. Model updating of a full-scale FE model with nonlinear constraint equations and sensitivity-based cluster analysis for updating parameters. Mech. Syst. Signal Process. 2017, 83, 337–355. [Google Scholar] [CrossRef]
- Alizadeh, R.; Allen, J.K.; Mistree, F. Managing computational complexity using surrogate models: A critical review. Res. Eng. Des. 2020, 31, 275–298. [Google Scholar]
- Kudela, J.; Matousek, R. Recent advances and applications of surrogate models for finite element method computations: A review. Soft Comput. 2022, 26, 13709–13733. [Google Scholar] [CrossRef]
- Stochino, F.; Cazzani, A.; Poppi, S.; Turco, E. Sardinia Radio Telescope finite element model updating by means of photogrammetric measurements. Math. Mech. Solids 2017, 22, 885–901. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Wang, H.R.; Zuo, Y.X. Parameters Compound Optimization Method for the Submillimeter-wave Antenna Finite Element Model Updating. Acta Astron. Sin. 2019, 60, 31. (In Chinese) [Google Scholar]
- Aktas, K.G.; Esen, I. State-space modeling and active vibration control of smart flexible cantilever beam with the use of finite element method. Eng. Technol. Appl. Sci. Res. 2020, 10, 6549–6556. [Google Scholar] [CrossRef]
- Tanaka, H. Surface error estimation and correction of a space antenna based on antenna gainanalyses. Acta Astronaut. 2011, 68, 1062–1069. [Google Scholar] [CrossRef]
- Sharma, K.; Trivedi, M.K. Latin hypercube sampling-based NSGA-III optimization model for multimode resource constrained time–cost–quality–safety trade-off in construction projects. Int. J. Constr. Manag. 2022, 22, 3158–3168. [Google Scholar] [CrossRef]
- Wang, C.S.; Duan, B.Y.; Qiu, Y.Y. Precise algorithm for surface errors of reflector antennas and analysis of its electrical performance. Chin. J. Radio Sci. 2006, 21, 403–406. [Google Scholar]
- Wang, L.; Zhang, Y.; Feng, J. On the Euclidean distance of images. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.M.; Regis, R.G.; Shoemaker, C.A. ORBIT: Optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput. 2008, 30, 3197–3219. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.; Zhang, B.; Du, K.L. Using radial basis function networks for function approximation and classification. Int. Sch. Res. Not. 2012, 2012, 324194. [Google Scholar] [CrossRef]
- Long, T.; Guo, X.; Peng, L.; Liu, L. Optimization strategy using dynamic radial basis function metamodel based on trust region. J. Mech. Eng. 2014, 50, 184–190. (In Chinese) [Google Scholar] [CrossRef]
- Iooss, B.; Lemaître, P. A review on global sensitivity analysis methods. In Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications; Springer: Boston, MA, USA, 2015; pp. 101–122. [Google Scholar]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar]
Radial Function | Gauss | Multi-Quadratic | Inverse Multi-Quadratic | Logarithmic Path |
---|---|---|---|---|
functional form | exp(-) |
Variable c | Objective Function Values | |
---|---|---|
initial value | 1 | 0.74 |
optimal values | 69.4 | 0.61 × 10−2 |
Variable c | Objective Function Values | |
---|---|---|
initial value | 1 | 0.38 |
optimal values | 57.2 | 0.83 × 10−2 |
The Number of Parameters | 2 | 4 | 18 | 19 | 33 | 49 | 50 |
---|---|---|---|---|---|---|---|
Elastic modulus/GPa | 218.3 | 190.4 | 191.1 | 190.3 | 190.4 | 190.7 | 190.5 |
Number of Calculations | Time-Consuming/s | |
---|---|---|
FE model | 1 | 7.73 |
RBF model | 1 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xiang, B.; Wang, W.; Lian, P.; Zhao, Y.; Cui, H.; Lin, S.; Zhou, J. Finite Element Model Updating Method for Radio Telescope Antenna Based on Parameter Optimization with Surrogate Model. Appl. Sci. 2024, 14, 5620. https://doi.org/10.3390/app14135620
Wang S, Xiang B, Wang W, Lian P, Zhao Y, Cui H, Lin S, Zhou J. Finite Element Model Updating Method for Radio Telescope Antenna Based on Parameter Optimization with Surrogate Model. Applied Sciences. 2024; 14(13):5620. https://doi.org/10.3390/app14135620
Chicago/Turabian StyleWang, Shuo, Binbin Xiang, Wei Wang, Peiyuan Lian, Yongqing Zhao, Hanwei Cui, Shangmin Lin, and Jianping Zhou. 2024. "Finite Element Model Updating Method for Radio Telescope Antenna Based on Parameter Optimization with Surrogate Model" Applied Sciences 14, no. 13: 5620. https://doi.org/10.3390/app14135620
APA StyleWang, S., Xiang, B., Wang, W., Lian, P., Zhao, Y., Cui, H., Lin, S., & Zhou, J. (2024). Finite Element Model Updating Method for Radio Telescope Antenna Based on Parameter Optimization with Surrogate Model. Applied Sciences, 14(13), 5620. https://doi.org/10.3390/app14135620