Machine Learning for Predicting Neutron Effective Dose
Abstract
:1. Introduction
2. Methodology
2.1. Data Preparation
2.2. ML Model Selection
2.3. Evaluation and Cross Validation
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Snyder, W.S.; Ford, M.R.; Warner, G.G.; Fisher, H.L., Jr. Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom; Oak Ridge National Lab: Oak Ridge, TN, USA, 1969. [Google Scholar]
- Howell, R.W.; Wessels, B.W.; Loevinger, R.; MIRD Committee. The MIRD perspective 1999. J. Nucl. Med. 1999, 40, 3S–10S. [Google Scholar] [PubMed]
- Abadi, E.; Segars, W.P.; Tsui, B.M.; Kinahan, P.E.; Bottenus, N.; Frangi, A.F.; Maidment, A.; Lo, J.; Samei, E. Virtual clinical trials in medical imaging: A review. J. Med. Imaging 2020, 7, 042805–042845. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Yeom, Y.S.; Petoussi-Hen, N.; Zankl, M.; Bolch, W.E.; Lee, C.; Choi, C.; Nguyen, T.T.; Eckerman, K.; Kim, H.S.; et al. ICRP publication 145: Adult mesh-type reference computational phantoms. Ann. ICRP 2020, 49, 13–201. [Google Scholar] [CrossRef]
- Peng, Z.; Gao, N.; Wu, B.; Chen, Z.; Xu, X.G. A review of computational phantoms for quality assurance in radiology and radiotherapy in the deep-learning era. J. Radiat. Prot. Res. 2022, 47, 111–133. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection; ICRP Publication 26; ICRP Publication: Oxford, UK, 1977. [Google Scholar]
- International Commission on Radiological Protection. 1990 Recommendations of the International Commission on Radiological Protection; ICRP Publication 60; The International Commission on Radiological Protection: New York, NY, USA, 1991. [Google Scholar]
- McCollough, C.H.; Schueler, B.A. Calculation of effective dose. Med. Phys. 2000, 27, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.A. Photon, Electron, Proton and Neutron Interaction Data for Body Tissues: ICRU Report 46; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1992. [Google Scholar]
- Zankl, M.; Schlattl, H.; Petoussi-Henss, N.; Hoeschen, C. Electron specific absorbed fractions for the adult male and female ICRP/ICRU reference computational phantoms. Phys. Med. Biol. 2012, 57, 4501. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Q.; Lam, S.; Cai, J.; Yang, R. A review on application of deep learning algorithms in external beam radiotherapy automated treatment planning. Front. Oncol. 2020, 10, 580919. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Lin, X.; Yi, Y.; Huang, Y.; Qu, L.; Zhuo, W.; Liu, H. Fast prediction of patient-specific organ doses in brain CT scans using support vector regression algorithm. Phys. Med. Biol. 2024, 69, 025010. [Google Scholar] [CrossRef]
- ICRPP. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP. 2009, 39, 1. [Google Scholar]
- ICRP. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116. Ann. ICRP 2010, 40, 2–5. [Google Scholar]
- Bozkurt, A.; Chao, T.C.; Xu, X.G. Fluence-to-dose conversion coefficients from monoenergetic neutrons below 20 MeV based on the VIP-man anatomical model. Phys. Med. Biol. 2000, 45, 3059. [Google Scholar] [CrossRef] [PubMed]
- Hakimabad, H.M.; Motavalli, L.R.; Shahri, K.K. Assessment of neutron fluence to organ dose conversion coefficients in the ORNL analytical adult phantom. J. Radiol. Prot. 2009, 29, 51. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.K.; Hussein, M.A.; Altaher, K.M.; Farid, K.Y.; Amer, M.; Aldhafery, B.F.; Alghamdi, A.A. Fluence-to-effective dose conversion coefficients from a Saudi population based phantom for monoenergetic photon beams from 10 keV to 20 MeV. J. Radiol. Prot. 2014, 35, 75. [Google Scholar] [CrossRef] [PubMed]
- Raschka, S.; Mirjalili, V. Python Machine Learning: Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow 2; Packt Publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Deka, B.; Maji, P.; Mitra, S.; Bhattacharyya, D.; Bora, P.; Pal, S. Pattern Recognition and Machine Intelligence. In Proceedings of the 8th International Conference, PReMI 2019, Tezpur, India, 17–20 December 2019. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, S.; Valdes, G. Machine learning for radiation outcome modeling and prediction. Med. Phys. 2020, 47, e178–e184. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. JMLR 2011, 12, 2825–2830. [Google Scholar]
- Cordeiro, T.P.V.; Silva, A.X.; Crispim, V.R. Calculation of conversion coefficients for effective dose for neutrons using a female voxel anthropomorphic model and the MCNPX code. In Proceedings of the INAC 2009: International Nuclear Atlantic Conference. Innovations in Nuclear Technology for a Sustainable Future, Rio de Janeiro, Brazil, 27 September–2 October 2009. [Google Scholar]
- Alghamdi, A.A.; Ma, A.; Tzortzis, M.; Spyrou, N.M. Neutron-fluence-to-dose conversion coefficients in an anthropomorphic phantom. Radiat. Prot. Dosim. 2005, 115, 606–611. [Google Scholar] [CrossRef]
ICRP-110-Male | ICRP-110-Female | ICRP-116-Female | ICRP-116-Male | VIP-Man | MIRD-Male | Saudi Voxel_Male | |
---|---|---|---|---|---|---|---|
1 | RBM | RBM | RBM | RBM | Adrenals | Bladder | * RBM |
2 | Colon | Colon | Colon | Colon | Bladder | Bone | * Colon |
3 | Stomach | Stomach | Stomach | Stomach | Esophagus | Colon | * Stomach |
4 | Gonad | Breast | Breast | Bone | Bone | Gonad | * Gonad |
5 | Bladder | Bladder | Bladder | Gonad | Brain | Lung | * Lung |
6 | Esophagus | Esophagus | Esophagus | Bladder | Liver | Liver | * Bladder |
7 | Liver | Liver | Liver | Esophagus | Heart | Esophagus | * Bone |
8 | Thyroid | Thyroid | Thyroid | Liver | RBM | RBM | * Esophagus |
9 | Brain | Brain | Brain | Thyroid | Kidneys | Skin | * Liver |
10 | Skin | Skin | Skin | Brain | Lung | Stomach | * Thyroid |
11 | Adrenals | Adrenals | Adrenals | Skin | Thyroid | * Brain | |
12 | Salivary | Salivary | Salivary | Adrenals | Muscle | * Skin | |
13 | Heart | Heart | Heart | Salivary | Skin | * Breast | |
14 | Kidneys | Kidneys | Kidneys | Heart | Stomach | * Salivary | |
18 | Lymph | Lymph | Lymph | Kidneys | Gonad | † Adrenal | |
19 | Muscle | Muscle | Muscle | Lymph | † Heart | ||
20 | Pancreas | Pancreas | Pancreas | Muscle | † Kidneys | ||
21 | Prostate | Ovaries | Ovaries | Pancreas | † Lymph | ||
22 | Intestine | Intestine | Intestine | Prostate | † Muscle | ||
23 | Spleen | Spleen | Spleen | Intestine | † Pancreas | ||
24 | Thymus | Thymus | Thymus | Spleen | † Prostate | ||
26 | Eye lens | Eye lens | Eye lens | Thymus | † Intestine | ||
27 | Gall Bladder | Uterus | Uterus | Eye lens | † Spleen | ||
28 | Endothoracic | Gall bladder | † Thymus | ||||
29 | Mucosa | Endothoracic | † Gall Bladder | ||||
30 | Breast | Mucosa |
ML Model | Mean Square Error | Mean Absolute Error | R2 |
---|---|---|---|
EXTR-C | 3.42 | 0.88 | 0.992 |
XGB-C | 1.57 | 0.01 | 0.996 |
GB-C | 5.41 | 1.32 | 0.987 |
EXTR | 6.54 | 1.24 | 0.984 |
XGB | 2.30 | 0.65 | 0.994 |
GB | 3.82 | 1.14 | 0.990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.A.A. Machine Learning for Predicting Neutron Effective Dose. Appl. Sci. 2024, 14, 5740. https://doi.org/10.3390/app14135740
Alghamdi AAA. Machine Learning for Predicting Neutron Effective Dose. Applied Sciences. 2024; 14(13):5740. https://doi.org/10.3390/app14135740
Chicago/Turabian StyleAlghamdi, Ali A. A. 2024. "Machine Learning for Predicting Neutron Effective Dose" Applied Sciences 14, no. 13: 5740. https://doi.org/10.3390/app14135740
APA StyleAlghamdi, A. A. A. (2024). Machine Learning for Predicting Neutron Effective Dose. Applied Sciences, 14(13), 5740. https://doi.org/10.3390/app14135740