Enhanced Epileptic Seizure Detection through Wavelet-Based Analysis of EEG Signal Processing
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. EEG Signals
3.2. Signal Preprocessing
Savitzky–Golay Filter
3.3. Discrete Wavelet Transform (DWT)
3.4. Feature Functions
3.5. Support Vector Machine (SVM)
4. Results and Discussion
4.1. Analysis of EEG Signals
4.2. Datasets
4.2.1. A Dataset of Neonatal EEG Recordings with Seizure Annotations
4.2.2. CHB-MIT Scalp EEG Database
4.3. EEG Signal Filtering with SGF
4.4. Wavelet Signal Decomposition
4.5. Feature Extraction
4.6. SVM-Based Feature Classification
4.7. Model Classification Performance
4.8. Comparison with Other Works
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
BTD | Block Term Decomposition |
CAE | Convolutional Autoencoder |
CHB-MIT | Children’s Hospital Boston database |
CMIM | Conditional Mutual Information Maximization |
CNN | Convolutional Neural Network |
CPD | Canonical Polyadic Decomposition |
CWT | Continuous Wavelet Transform |
DCT | Discrete Cosine Transform |
DL | Deep Learning |
DWT | Discrete Wavelet Transform |
EEG | Electroencephalogram |
EMD | Empirical Mode Decomposition |
EWT | Empirical Wavelet Transform |
FBM | Fractional Brownian Motion |
FC-NLSTM | Fully Convolutional Nested LSTM |
FD | Fractal Dimensions |
FGN | Fractional Gaussian Noise |
FIR | Finite Impulse Response |
GRU | Gated Recurrent Unit |
HE | Hurst Exponent |
HHT | Hilbert–Huang Transform |
IMF | Intrinsic Mode Functions |
KKT | Karush–Kuhn–Tucker |
KNN | K-Nearest Neighbors |
LB | Longitudinal Bipolar montage |
LDA | Linear Discriminant Analysis |
LSTM | Long-Short Term Memory |
ML | Machine Learning |
MSE | Mean Square Error |
NICU | Neonatal Intensive Care Unit |
PCA | Principal Component Analysis |
RBF | Radial Basis Function |
RNN | Recurrent Neural Network |
RTS_RCVAE | Recurrent Topic-Synchronized Variational Autoencoder |
SGF | Savitzky–Golay filter |
SNR | Signal-to-noise ratio |
SVM | Support Vector Machine |
TQWT | Tunable-Q Wavelet Transform |
WGN | White Gaussian Noise |
WPD | Wavelet Packet Decomposition |
WT | Wavelet Transform |
References
- World Health Organization. Epilepsy. Available online: https://www.who.int/health-topics/epilepsy (accessed on 9 March 2024).
- Fisher, R. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, E. Analysis and Identification of Evoked Potentials in the Electroencephalogram. Bachelor’s Thesis, Universidad de Sevilla, Sevilla, Spain, 2019. [Google Scholar]
- Arriola, J. Mathematical Representation of Brain Waves. Master’s Thesis, National University of the South, Bahía Blanca, Argentina, 2016. [Google Scholar]
- Rojas, G.; Alvarez, C.; Montoya, C.E.; De la Iglesia-Vaya, M.; Cisternas, J.E.; Gálvez, M. Study of Resting-State Functional Connectivity Networks Using EEG Electrodes Position as Seed. Front. Neurosci. 2018, 12, 301197. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, C. Eliminación de Artefactos cardíAcos en señAles de Electroencefalograma Mediante Filtro Adaptativo. Bachelor’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2020. [Google Scholar]
- Gómez, J. Estudio Comparativo de téCnicas de Caracterización y Clasificación Automática de Emociones a Partir de señAles del Cerebro. Bachelor’s Thesis, Universidad de Nariño, San Juán de Pasto, Colombia, 2018. [Google Scholar]
- Bermúdez, A. Técnicas de Procesamiento de EEG para Detección de Eventos. Master’s Thesis, Universidad Nacional de la Plata, Buenos Aires, Argentina, 2013. [Google Scholar]
- Chowdhury, T.; Hossain, A.; Fattah, S.; Shahnaz, C. Seizure and Non-Seizure EEG Signals Detection Using 1-D Convolutional Neural Network Architecture of Deep Learning Algorithm. In Proceedings of the 1st International Conference on Advances in Science, Engineering, and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019. [Google Scholar]
- Zhou, M.; Tian, C.; Cao, R.; Wang, B.; Niu, Y.; Hu, T.; Guo, H.; Xiang, J. Epileptic Seizure Detection Based on EEG Signals and CNN. Front. Neuroinform. 2018, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Wei, X. Automatic seizure detection using three-dimensional CNN based on multi-channel EEG. BMC Med. Inform. Decis. 2018, 18, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Omar, A. Optimizing epileptic seizure recognition performance with feature scaling and dropout layers. Neural Comput. Appl. 2023, 36, 2835–2852. [Google Scholar] [CrossRef]
- Hussein, R. Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals. Clin. Neurophysiol. 2019, 130, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Automatic Seizure Detection using Fully Convolutional Nested LSTM. Int. J. Neural Syst. 2020, 30, 2050019. [Google Scholar] [CrossRef] [PubMed]
- Lebal, A. Epilepsy-Net: Attention-based 1D-inception network model for epilepsy detection using one-channel and multi-channel EEG signals. Multimed. Tools Appl. 2023, 82, 17391–17413. [Google Scholar] [CrossRef]
- He, P. Unsupervised feature learning based on autoencoder for epileptic seizures prediction. Appl. Intell. 2023, 53, 20766–20784. [Google Scholar] [CrossRef]
- Guo, L. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J. Neurosci. Methods 2010, 191, 101–109. [Google Scholar] [CrossRef]
- Khan, S. Robust Epileptic Seizure Detection Using Long Short-Term Memory and Feature Fusion of Compressed Time–Frequency EEG Images. Sensors 2023, 23, 9572. [Google Scholar] [CrossRef]
- Tian, X. Deep Multi-View Feature Learning for EEG-Based Epileptic Seizure Detection. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1962–1972. [Google Scholar] [CrossRef] [PubMed]
- Najafi, T. A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy. Sensors 2022, 22, 7269. [Google Scholar] [CrossRef] [PubMed]
- Malekzadeh, A. Epileptic Seizures Detection in EEG Signals Using Fusion Handcrafted and Deep Learning Features. Sensors 2021, 21, 7710. [Google Scholar] [CrossRef] [PubMed]
- Selvathi, D.; Meera, V.K. Realization of epileptic seizure detection in EEG signal using wavelet transform and SVM classifier. In Proceedings of the International Conference on Signal Processing and Communication (ICSPC), Surfers Paradise, Australia, 28–29 July 2017; pp. 18–22. [Google Scholar]
- Anand, S.; Jaiswal, S.; Ghosh, P.K. Automatic Focal Eplileptic Seizure Detection in EEG Signals. In Proceedings of the 2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Uttarkhand, India, 18–19 December 2017; pp. 103–107. [Google Scholar]
- Gupta, A. A Novel Signal Modeling Approach for Classification of Seizure and Seizure-Free EEG Signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Zabihi, M. Patient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizures. In Proceedings of the IET Intelligent Signal Processing Conference, London, UK, 2–3 December 2013. [Google Scholar]
- Aldana, Y. Nonconvulsive Epileptic Seizure Detection in Scalp EEG Using Multiway Data Analysis. IEEE J. Biomed. Health Inform. 2019, 23, 660–671. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.S.; Kanhangad, V.; Pachori, R.B. Classification of Seizure and Seizure-free EEG Signals using Multi-Level Local Patterns. In Proceedings of the 19th International Conference on Digital Signal Processing, Hong Kong, China, 21–23 February 2014; pp. 646–650. [Google Scholar]
- Zeng, J. Automatic detection of epileptic seizure events using the time-frequency features and machine learning. Biomed. Signal Process. Control 2021, 69, 102916. [Google Scholar] [CrossRef]
- Blanco, S. Desarrollo de un Sistema para Análisis de Señales Electroencefalográficas. Bachelor’s Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2017. [Google Scholar]
- Luna de Luís, M. Procesamiento Digital de Señales de EEG para Clasificación de Trastornos Psicóticos Mediante Aprendizaje de Máquinas. Bachelor’s Thesis, Universidad de Chile, Santiago, Chile, 2021. [Google Scholar]
- Sánchez, A. Sonorization of EEG Signals Based on Musical Structures. Bachelor’s Thesis, University of the Andes, Bogotá, Colombia, 2012. [Google Scholar]
- Schafer, R. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Shensha, M. The Discrete Wavelet Transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef]
- Castro, L.R.; Castro, S.M. Wavelets y sus aplicaciones. In Proceedings of the 1st Congreso Argentino de Ciencias de la Computación, Bahía Blanca, Argentina; 1995; pp. 195–204. [Google Scholar]
- Ocak, H. Automatic detection of epileptic seizures in EEG using Discrete Wavelet Transform and approximate entropy. Expert Syst. Appl. 2009, 36, 2027–2036. [Google Scholar] [CrossRef]
- Carmona, E.J. Tutorial Sobre Máquinas de Vectores de Soporte (SVM); National Distance Education University: Madrid, Spain, 2016. [Google Scholar]
- Stevenson, N. A dataset of neonatal EEG recordings with seizure annotations. Sci. Data 2019, 6, 190039. [Google Scholar] [CrossRef] [PubMed]
- Guttag, J. CHB-MIT Scalp EEG Database (Version 1.0.0). PhysioNet. 2010. Available online: https://physionet.org/content/chbmit/1.0.0/ (accessed on 15 March 2024).
- Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
Signal | SNR (dB) | ||||||
---|---|---|---|---|---|---|---|
WGN level | −15 | −10 | −5 | 0 | 5 | 10 | 15 |
SGF 5–15 | −5.3 | −3.63 | −0.75 | 3.32 | 7.97 | 12.8 | 17.79 |
SGF 13–31 | −4.64 | −3.16 | −0.46 | 3.47 | 8.07 | 12.87 | 17.85 |
SGF 22–35 | −2.84 | −1.76 | 0.40 | 3.90 | 8.29 | 13.01 | 17.97 |
EDF File | Signal | Seizures | Sen | Sen | Spec | Spec | Acc | Acc |
---|---|---|---|---|---|---|---|---|
chb01_03.edf | 5 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb01_04.edf | 22 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb02_16.edf | 16 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb02_19.edf | 5 | 1 | 100 | 100 | 50 | 50 | 66.7 | 66.7 |
chb03_01.edf | 18 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb03_02.edf | 18 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb04_05.edf | 20 | 1 | 100 | 100 | 66.7 | 100 | 75 | 100 |
chb04_08.edf | 14 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb05_06.edf | 11 | 1 | 50 | 100 | 100 | 100 | 66.7 | 100 |
chb05_13.edf | 18 | 1 | 100 | 100 | 100 | 50 | 100 | 66.7 |
chb06_01.edf | 18 | 3 | 100 | 66.67 | 50 | 50 | 80 | 60 |
chb06_04.edf | 11 | 2 | 100 | 100 | 100 | 100 | 100 | 100 |
chb07_12.edf | 6 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb07_13.edf | 15 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb08_02.edf | 6 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb08_05.edf | 20 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb09_06.edf | 7 | 1 | 100 | 100 | 50 | 33.33 | 66.7 | 50 |
chb09_08.edf | 23 | 2 | 100 | 100 | 100 | 100 | 100 | 100 |
chb10_12.edf | 7 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
chb10_20.edf | 10 | 1 | 100 | 100 | 0 | 0 | 50 | 50 |
Mean | - | - | 97.5 | 98.3 | 85.83 | 84.17 | 90.26 | 89.67 |
EDF File | Signal | Seizures | Sen | Sen | Spec | Spec | Acc | Acc |
---|---|---|---|---|---|---|---|---|
eeg1.edf | 7 | 44 | 59.09 | 72.73 | 97.8 | 95.56 | 78.65 | 84.27 |
eeg2.edf | 10 | 2 | 50 | 50 | 100 | 100 | 80 | 80 |
eeg3.edf | 4 | 0 | - | - | 100 | 0 | 100 | 0 |
eeg4.edf | 15 | 9 | 77.78 | 77.78 | 80 | 90 | 78.95 | 84.21 |
eeg5.edf | 13 | 5 | 80 | 60 | 100 | 100 | 90.91 | 81.82 |
eeg6.edf | 4 | 4 | 75 | 75 | 80 | 80 | 77.78 | 77.78 |
eeg7.edf | 1 | 20 | 75 | 80 | 85.71 | 80.95 | 80.49 | 80.49 |
eeg8.edf | 2 | 3 | 66.67 | 66.67 | 50 | 50 | 57.14 | 57.14 |
eeg9.edf | 16 | 7 | 71.43 | 71.43 | 100 | 100 | 86.67 | 86.67 |
eeg10.edf | 1 | 0 | - | - | 0 | 0 | 0 | 0 |
eeg11.edf | 1 | 4 | 75 | 50 | 0 | 40 | 33.33 | 44.44 |
eeg12.edf | 4 | 1 | 100 | 100 | 100 | 100 | 100 | 100 |
eeg13.edf | 7 | 6 | 83.33 | 66.67 | 42.86 | 71.43 | 61.54 | 69.23 |
eeg14.edf | 8 | 30 | 80 | 86.67 | 90.32 | 96.77 | 85.25 | 91.8 |
eeg15.edf | 8 | 21 | 80.95 | 76.19 | 90.91 | 95.45 | 86.05 | 86.05 |
eeg16.edf | 19 | 43 | 58.14 | 69.77 | 100 | 97.73 | 79.31 | 83.91 |
eeg17.edf | 10 | 3 | 66.67 | 66.67 | 25 | 25 | 42.86 | 42.86 |
eeg18.edf | 9 | 0 | - | - | 100 | 100 | 100 | 100 |
eeg19.edf | 1 | 12 | 75 | 66.67 | 61.54 | 76.92 | 68 | 72 |
eeg20.edf | 2 | 22 | 77.27 | 72.73 | 82.61 | 86.96 | 80 | 80 |
Mean | - | - | 73.61 | 71.11 | 74.34 | 74.34 | 73.35 | 70.13 |
EDF File | Signal | Seizures | Sen | Sen | Spec | Spec | Acc | Acc |
---|---|---|---|---|---|---|---|---|
eeg1.edf | 7 | 44 | 93.18 | 90.9 | 97.8 | 95.56 | 96 | 93.26 |
eeg2.edf | 10 | 2 | 100 | 100 | 100 | 100 | 100 | 100 |
eeg3.edf | 4 | 0 | - | - | 100 | 100 | 100 | 100 |
eeg4.edf | 15 | 9 | 100 | 88.9 | 100 | 100 | 100 | 94.74 |
eeg5.edf | 13 | 5 | 100 | 100 | 100 | 100 | 100 | 100 |
eeg6.edf | 4 | 4 | 100 | 100 | 100 | 100 | 100 | 100 |
eeg7.edf | 1 | 20 | 90 | 90 | 81 | 90.48 | 85 | 90.24 |
eeg8.edf | 2 | 3 | 100 | 100 | 100 | 100 | 100 | 100 |
eeg9.edf | 16 | 7 | 57.14 | 71.4 | 100 | 100 | 80 | 86.67 |
eeg10.edf | 1 | 0 | - | - | 100 | 100 | 100 | 100 |
eeg11.edf | 1 | 4 | 100 | 75 | 80 | 80 | 89 | 77.78 |
eeg12.edf | 4 | 1 | 100 | 0 | 100 | 100 | 100 | 66.67 |
eeg13.edf | 7 | 6 | 100 | 100 | 71.4 | 71.43 | 85 | 84.62 |
eeg14.edf | 8 | 30 | 93.33 | 90 | 96.8 | 96.77 | 95 | 93.44 |
eeg15.edf | 8 | 21 | 95.24 | 90.5 | 90.9 | 95.45 | 93 | 93.02 |
eeg16.edf | 19 | 43 | 93.02 | 90.7 | 97.7 | 97.73 | 95 | 94.25 |
eeg17.edf | 10 | 3 | 100 | 100 | 25 | 25 | 57 | 57.14 |
eeg18.edf | 9 | 0 | - | - | 100 | 100 | 100 | 100 |
eeg19.edf | 1 | 12 | 91.67 | 83.3 | 84.6 | 92.31 | 88 | 88 |
eeg20.edf | 2 | 22 | 94.46 | 90.9 | 91.3 | 91.3 | 93 | 91.11 |
Mean | - | - | 94.65 | 86 | 90.8 | 91.8 | 92.82 | 90.55 |
Method | Accuracy (%) | Operational Time (s) | Database |
---|---|---|---|
1-D CNN, +Butterworth filter, [9] | 99.4 | N/A | Bonn |
CNN, [10] | 97.5 | N/A | Freiburg |
3-D CNN, [11] | 92.37 | N/A | Xinjiang |
1-D CNN + LSTM + PCA [12] | 99.3 | N/A | Not available |
LSTM, [13] | 100.0 | N/A | Bonn |
FC-NLSTM, [14] | 100.0 | 0.00158 | Bonn/Freiburg |
CNN + LSTM, [15] | 100 | N/A | Bonn |
RTS-RCVAE, [16] | 98.43 | N/A | Bonn |
WT + ANN, [17] | 99.6 | N/A | Bonn |
CWT + CAE + LSTM, [18] | 100 | N/A | Bonn |
FFT + WPD + CNN, [19] | 98.33 | N/A | CHB-MIT |
LB + DWT + LSTM, [20] | 96.1 | N/A | HCTM |
TQWT + CNN + LSTM, [21] | 99.71 | N/A | Bonn/Freiburg |
DWT + SVM, [22] | 95.6 | N/A | CHB-MIT |
HHT + EWT + SVM, [23] | 100 | N/A | Bonn |
DCT + SVM, [24] | 97 | 0.02444 | Bonn |
CMIM + SVM, [25] | 99.83 | N/A | CHB-MIT |
HHT + WT + KNN + SVM + LDA, [26] | 98 | 0.37 | CIREN |
EMD + IMF + KNN, [27] | 98.67 | N/A | Bonn |
Kurtosis-based channel + EWT, [28] | 99.88 | N/A | CHB-MIT |
SGF + DWT + SVM, This work | 92.82 | 0.019444 | Helsinki |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbina Fredes, S.; Dehghan Firoozabadi, A.; Adasme, P.; Zabala-Blanco, D.; Palacios Játiva, P.; Azurdia-Meza, C. Enhanced Epileptic Seizure Detection through Wavelet-Based Analysis of EEG Signal Processing. Appl. Sci. 2024, 14, 5783. https://doi.org/10.3390/app14135783
Urbina Fredes S, Dehghan Firoozabadi A, Adasme P, Zabala-Blanco D, Palacios Játiva P, Azurdia-Meza C. Enhanced Epileptic Seizure Detection through Wavelet-Based Analysis of EEG Signal Processing. Applied Sciences. 2024; 14(13):5783. https://doi.org/10.3390/app14135783
Chicago/Turabian StyleUrbina Fredes, Sebastián, Ali Dehghan Firoozabadi, Pablo Adasme, David Zabala-Blanco, Pablo Palacios Játiva, and Cesar Azurdia-Meza. 2024. "Enhanced Epileptic Seizure Detection through Wavelet-Based Analysis of EEG Signal Processing" Applied Sciences 14, no. 13: 5783. https://doi.org/10.3390/app14135783
APA StyleUrbina Fredes, S., Dehghan Firoozabadi, A., Adasme, P., Zabala-Blanco, D., Palacios Játiva, P., & Azurdia-Meza, C. (2024). Enhanced Epileptic Seizure Detection through Wavelet-Based Analysis of EEG Signal Processing. Applied Sciences, 14(13), 5783. https://doi.org/10.3390/app14135783