Mid-Flexion Instability in Total Knee Arthroplasty: Insights from Robotic-Assisted Surgery
Abstract
:1. Introduction
2. Search Strategy
3. Definition, Mechanism, and Patient Dissatisfaction of MFI
4. MFI Diagnosis
5. Risk Factors for MFI
6. Evolution of TKA Surgery and Principles of Robotic TKA
7. Treatment Strategies and Impact of Robotics on MFI
8. Clinical Results and Evaluation
9. Challenges, Limitations, and Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Longo, U.G.; Candela, V.; Pirato, F.; Hirschmann, M.T.; Becker, R.; Denaro, V. Midflexion instability in total knee arthroplasty: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Cantivalli, A.; Cottino, U.; Bonasia, D.E.; Rosso, F.; Rossi, R. Robotic Systems in Knee Surgery: Current Concepts and Future Perspectives. Prosthesis 2023, 5, 1257–1274. [Google Scholar] [CrossRef]
- Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J. Bone Joint. Surg. Am. 2018, 100, 1455–1460. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Naito, Y.; Yamaguchi, T.; Wakabayashi, H.; Sudo, A. Factors Contributing to Patient Satisfaction and Expectations following Computer-Assisted Total Knee Arthroplasty. J. Knee Surg. 2018, 31, 448–452. [Google Scholar] [PubMed]
- Le, D.H.; Goodman, S.B.; Maloney, W.J.; Huddleston, J.I. Current modes of failure in TKA: Infection, instability, and stiffness predominate. Clin. Orthop. Relat. Res. 2014, 472, 2197–2200. [Google Scholar] [CrossRef] [PubMed]
- Held, M.B.; Grosso, M.J.; Gazgalis, A.; Sarpong, N.O.; Boddapati, V.; Neuwirth, A.; Geller, J.A. Improved Compartment Balancing Using a Robot-Assisted Total Knee Arthroplasty. Arthroplast. Today 2021, 7, 130–134. [Google Scholar] [CrossRef]
- Liow, M.H.; Xia, Z.; Wong, M.K.; Tay, K.J.; Yeo, S.J.; Chin, P.L. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J. Arthroplasty 2014, 29, 2373–2377. [Google Scholar] [CrossRef]
- Shalhoub, S.; Lawrence, J.M.; Keggi, J.M.; Randall, A.L.; DeClaire, J.H.; Plaskos, C. Imageless, robotic-assisted total knee arthroplasty combined with a robotic tensioning system can help predict and achieve accurate postoperative ligament balance. Arthroplast. Today 2019, 5, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Vajapey, S.P.; Pettit, R.J.; Li, M.; Chen, A.F.; Spitzer, A.I.; Glassman, A.H. Risk Factors for Mid-Flexion Instability After Total Knee Arthroplasty: A Systematic Review. J. Arthroplasty 2020, 35, 3046–3054. [Google Scholar] [CrossRef]
- Mehta, N.; Burnett, R.A.; Kahlenberg, C.A.; Miller, R.; Chalmers, B.; Cross, M.B. Mid-Flexion Instability After Total Knee Arthroplasty: Diagnosis, Implant Design, and Outcomes. Orthopedics 2023, 46, e13–e19. [Google Scholar] [CrossRef]
- Martin, J.W.; Whiteside, L.A. The influence of joint line position on knee stability after condylar knee arthroplasty. Clin. Orthop. Relat. Res. 1990, 259, 146–156. [Google Scholar] [CrossRef]
- Yoon, J.R.; Jeong, H.I.; Oh, K.J.; Yang, J.H. In vivo gap analysis in various knee flexion angles during navigation-assisted total knee arthroplasty. J. Arthroplast. 2013, 28, 1796–1800. [Google Scholar] [CrossRef] [PubMed]
- Alrajeb, R.; Zarti, M.; Shuia, Z.; Alzobi, O.; Ahmed, G.; Elmhiregh, A. Robotic-assisted versus conventional total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Orthop. Surg. Traumatol. 2024, 34, 1333–1343. [Google Scholar] [CrossRef]
- Mulpur, P.; Masilamani, A.B.S.; Prakash, M.; Annapareddy, A.; Hippalgaonkar, K.; Reddy, A.V.G. Comparison of patient reported outcomes after robotic versus manual total knee arthroplasty in the same patient undergoing staged bilateral knee arthroplasty. J. Orthop. 2022, 34, 111–115. [Google Scholar] [CrossRef]
- Agrawal, V.O.; Gadekar, A.P.; Vaidya, N. Does robotic technology successfully restore the joint line after total knee arthroplasty? A retrospective analysis. Arthroplasty 2022, 4, 6. [Google Scholar] [CrossRef]
- Shalhoub, S.; Moschetti, W.E.; Dabuzhsky, L.; Jevsevar, D.S.; Keggi, J.M.; Plaskos, C. Laxity Profiles in the Native and Replaced Knee-Application to Robotic-Assisted Gap-Balancing Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 3043–3048. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Tone, S.; Naito, Y.; Sudo, A. Intraoperative midflexion medial laxity using navigation affects patient expectations following posterior stabilized total knee arthroplasty. J. Orthop. Surg. 2022, 30, 10225536221119512. [Google Scholar] [CrossRef]
- Scuderi, G.R.; Bourne, R.B.; Noble, P.C.; Benjamin, J.B.; Lonner, J.H.; Scott, W.N. The new Knee Society Knee Scoring System. Clin. Orthop. Relat. Res. 2012, 470, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.J.; Lim, H.; Lee, N.R.; Moon, Y.W. Diagnosis, causes and treatments of instability following total knee arthroplasty. Knee Surg. Relat. Res. 2014, 26, 61–67. [Google Scholar] [CrossRef]
- Romero, J.; Seifert, B.; Reinhardt, O.; Ziegler, O.; Kessler, O. A useful radiologic method for preoperative joint-line determination in revision total knee arthroplasty. Clin. Orthop. Relat. Res. 2010, 468, 1279–1283. [Google Scholar] [CrossRef]
- Matziolis, G.; Brodt, S.; Windisch, C.; Roehner, E. Changes of posterior condylar offset results in midflexion instability in single-radius total knee arthroplasty. Arch. Orthop. Trauma. Surg. 2017, 137, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, L.; Bosco, F.; Barberis, L.; Camazzola, D.; Bistolfi, A.; Risitano, S.; Massè, A.; Indelli, P.F. Kinetic Sensors for Ligament Balance and Kinematic Evaluation in Anatomic Bi-Cruciate Stabilized Total Knee Arthroplasty. Sensors 2021, 21, 5427. [Google Scholar] [CrossRef] [PubMed]
- Marcheggiani Muccioli, G.M.; Alesi, D.; Russo, A.; Lo Presti, M.; Sassoli, I.; La Verde, M.; Zaffagnini, S. Intra- and inter-operator reliability assessment of a novel extramedullary accelerometer-based smart cutting guide for total knee arthroplasty: An in vivo study. Int. Orthop. 2023, 47, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, P.J.; Laster, S.K.; Lenz, N.M.; Sheth, N.P.; Schwarzkopf, R. A Computer Model of Mid-Flexion Instability in a Balanced Total Knee Arthroplasty. J. Arthroplast. 2018, 33, S265–S269. [Google Scholar] [CrossRef] [PubMed]
- Hino, K.; Ishimaru, M.; Iseki, Y.; Watanabe, S.; Onishi, Y.; Miura, H. Mid-flexion laxity is greater after posterior-stabilised total knee replacement than with cruciate-retaining procedures: A computer navigation study. Bone Joint J. 2013, 95, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Risitano, S.; Cacciola, G.; Capella, M.; Bosco, F.; Giustra, F.; Fusini, F.; Indelli, P.F.; Massé, A.; Sabatini, L. Comparison between gaits after a medial pivot and posterior stabilized primary total knee arthroplasty: A systematic review of the literature. Arthroplasty 2023, 5, 15. [Google Scholar] [CrossRef] [PubMed]
- Giustra, F.; Bistolfi, A.; Bosco, F.; Fresia, N.; Sabatini, L.; Berchialla, P.; Sciannameo, V.; Massè, A. Highly cross-linked polyethylene versus conventional polyethylene in primary total knee arthroplasty: Comparable clinical and radiological results at a 10-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Mihalko, W.M.; Krackow, K.A. Posterior cruciate ligament effects on the flexion space in total knee arthroplasty. Clin. Orthop. Relat. Res. 1999, 360, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, T.; Hino, K.; Kutsuna, T.; Watamori, K.; Kinoshita, T.; Takao, M. Difference in implant design affects midflexion rotational laxity in cruciate-retaining total knee arthroplasty: A computer navigation study. J. Exp. Orthop. 2023, 10, 85. [Google Scholar] [CrossRef]
- Wang, X.H.; Song, D.Y.; Dong, X.; Suguro, T.; Cheng, C.K. Motion type and knee articular conformity influenced mid-flexion stability of a single radius knee prosthesis. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1595–1603. [Google Scholar] [CrossRef]
- Stoddard, J.E.; Deehan, D.J.; Bull, A.M.; McCaskie, A.W.; Amis, A.A. The kinematics and stability of single-radius versus multi-radius femoral components related to mid-range instability after TKA. J. Orthop. Res. 2013, 31, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Incavo, S.J.; Schmid, S.; Sreenivas, K.; Ismaily, S.; Noble, P.C. Total knee arthroplasty using anatomic alignment can produce mid-flexion laxity. Clin. Biomech. 2013, 28, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, T.; Vandenneucker, H.; Ing, L.S.; Vereecke, E.; Ing, A.V.; Victor, J. Raising the Joint Line in TKA is Associated with Mid-flexion Laxity: A Study in Cadaver Knees. Clin. Orthop. Relat. Res. 2018, 476, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Saragaglia, D.; Rubens-Duval, B.; Gaillot, J.; Lateur, G.; Pailhé, R. Total knee arthroplasties from the origin to navigation: History, rationale, indications. Int. Orthop. 2019, 43, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Mazzucchelli, L.; Deledda, D.; Rosso, F.; Ratto, N.; Bruzzone, M.; Bonasia, D.E.; Rossi, R. Cruciate retaining and cruciate substituting ultra-congruent insert. Ann. Transl. Med. 2016, 4, 2. [Google Scholar]
- Kayani, B.; Konan, S.; Ayuob, A.; Onochie, E.; Al-Jabri, T.; Haddad, F.S. Robotic technology in total knee arthroplasty: A systematic review. EFORT Open Rev. 2019, 4, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Hampp, E.L.; Chughtai, M.; Scholl, L.Y.; Sodhi, N.; Bhowmik-Stoker, M.; Jacofsky, D.J.; Mont, M.A. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques. J. Knee Surg. 2019, 32, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Hardy, W.R.; Landy, D.C.; Chalmers, B.P.; Sabatini, F.M.; Duncan, S.T. Additional Distal Femoral Resection Minimally Improves Terminal Knee Extension: A Systematic Review and Meta-Regression Challenging the Dogma. Arthroplast. Today. 2023, 19, 101083. [Google Scholar] [CrossRef]
- Wang, H.; Simpson, K.J.; Chamnongkich, S.; Kinsey, T.; Mahoney, O.M. Biomechanical influence of TKA designs with varying radii on bilateral TKA patients during sit-to-stand. Dyn. Med. 2008, 7, 12. [Google Scholar] [CrossRef]
- Gordon, A.C.; Conditt, M.A.; Verstraete, M.A. Achieving a Balanced Knee in Robotic TKA. Sensors 2021, 21, 535. [Google Scholar] [CrossRef]
- Matziolis, G.; Brodt, S.; Windisch, C.; Roehner, E. The reversed gap technique produces anatomical alignment with less midflexion instability in total knee arthroplasty: A prospective randomized trial. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2430–2435. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Tone, S.; Naito, Y.; Sudo, A. Comparison of accuracy and early outcomes in robotic total knee arthroplasty using NAVIO and ROSA. Sci. Rep. 2024, 14, 3192. [Google Scholar] [CrossRef] [PubMed]
- Mancino, F.; Rossi, S.M.P.; Sangaletti, R.; Lucenti, L.; Terragnoli, F.; Benazzo, F. A new robotically assisted technique can improve outcomes of total knee arthroplasty comparing to an imageless navigation system. Arch. Orthop. Trauma. Surg. 2023, 143, 2701–2711. [Google Scholar] [CrossRef] [PubMed]
- Itamoto, A.; Nishitani, K.; Kuriyama, S.; Nakamura, S.; Matsuda, S. Catastrophic Mid-Flexion Instability After Avulsion Fractures of the Articular Capsule of the Femur and Tibia in a Patient with Posterior-Stabilized Total Knee Arthroplasty: A Case Report. Cureus 2023, 15, e44379. [Google Scholar] [CrossRef] [PubMed]
- Wakelin, E.A.; Ponder, C.E.; Randall, A.L.; Koenig, J.A.; Plaskos, C.; DeClaire, J.H.; Lawrence, J.M.; Keggi, J.M. Intra-operative laxity and balance impact 2-year pain outcomes in TKA: A prospective cohort study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 5535–5545. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.M.P.; Mancino, F.; Sangaletti, R.; Perticarini, L.; Lucenti, L.; Benazzo, F. Augmented Reality in Orthopedic Surgery and Its Application in Total Joint Arthroplasty: A Systematic Review. Appl. Sci. 2022, 12, 5278. [Google Scholar] [CrossRef]
Patient-Specific Risk Factors [1,9] | Implant-Specific Risk Factors [1,9] | Technique-Specific Risk Factors [1,9] |
---|---|---|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosco, F.; Giustra, F.; Rovere, G.; Masoni, V.; Cassaro, S.; Giambusso, M.; Giai Via, R.; Massè, A.; Lucenti, L.; Camarda, L. Mid-Flexion Instability in Total Knee Arthroplasty: Insights from Robotic-Assisted Surgery. Appl. Sci. 2024, 14, 6436. https://doi.org/10.3390/app14156436
Bosco F, Giustra F, Rovere G, Masoni V, Cassaro S, Giambusso M, Giai Via R, Massè A, Lucenti L, Camarda L. Mid-Flexion Instability in Total Knee Arthroplasty: Insights from Robotic-Assisted Surgery. Applied Sciences. 2024; 14(15):6436. https://doi.org/10.3390/app14156436
Chicago/Turabian StyleBosco, Francesco, Fortunato Giustra, Giuseppe Rovere, Virginia Masoni, Salvatore Cassaro, Mauro Giambusso, Riccardo Giai Via, Alessandro Massè, Ludovico Lucenti, and Lawrence Camarda. 2024. "Mid-Flexion Instability in Total Knee Arthroplasty: Insights from Robotic-Assisted Surgery" Applied Sciences 14, no. 15: 6436. https://doi.org/10.3390/app14156436
APA StyleBosco, F., Giustra, F., Rovere, G., Masoni, V., Cassaro, S., Giambusso, M., Giai Via, R., Massè, A., Lucenti, L., & Camarda, L. (2024). Mid-Flexion Instability in Total Knee Arthroplasty: Insights from Robotic-Assisted Surgery. Applied Sciences, 14(15), 6436. https://doi.org/10.3390/app14156436