An Improved Target Network Model for Rail Surface Defect Detection
Abstract
:1. Introduction
- (1)
- A simplified network structure with a MobileNetV3 feature extraction network, reduced model parameters, an enlarged receptive field, more effectively extracted local features of samples, and improved computational efficiency and that has detection accuracy.
- (2)
- To address problems of slow convergence and overfitting in the model, we use the k-means++ clustering algorithm to adjust the anchors for object detection, improving the alignment between anchor boxes and real samples. The results show that this method can effectively accelerate network convergence speed and improve detection accuracy while mitigating sample imbalance concerns.
- (3)
- In order to tackle the challenges of oscillation and slow convergence in the loss function during algorithm training, we opted to substitute the conventional loss function with the EIOU function. By integrating the EIOU function, the algorithm can retain the essential features of the loss while minimizing the difference between the width and height of the target and anchors, consequently enhancing localization performance. The method proposed in this paper is shown in Figure 1.
2. Methodology
2.1. Improved YOLOv7 Network
2.2. The EIoU Loss Function
2.3. Unit Clustering Based on the k-means++ Algorithm
3. Experimental Design
3.1. Dataset of Rail Surface Defects
3.2. Experimental Platform and Equipment
3.3. Evaluation Metrics
4. Experimental Results and Analysis
4.1. Evaluation Metrics
4.2. Comparative Experiments
4.3. Comparison with Classical Algorithms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Jin, X.; Wu, Q.J.; Wang, Y.; He, Z.; Yang, Y. Automatic visual detection system of railway surface defects with curvature filter and improved Gaussian mixture model. IEEE Trans. Instrum. Meas. 2018, 67, 1593–1608. [Google Scholar] [CrossRef]
- Cai, X.; Tang, X.; Pan, S.; Wang, Y.; Yan, H.; Ren, Y.; Chen, N.; Hou, Y. Intelligent recognition of defects in high-speed railway slab track with limited dataset. Comput.-Aided Civ. Infrastruct. Eng. 2023, 39, 911–928. [Google Scholar] [CrossRef]
- Zheng, Z.; Qi, H.; Zhuang, L.; Zhang, Z. Automated rail surface crack analytics using deep data-driven models and transfer learning. Sustain. Cities Soc. 2021, 70, 102898. [Google Scholar] [CrossRef]
- Faghih-Roohi, S.; Hajizadeh, S.; Nunez, A.; Babuska, R.; De Schutter, B. Deep convolutional neural networks for detection of rail surface defects. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2584–2589. [Google Scholar]
- Li, Q.; Ren, S. A visual detection system for rail surface defects. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2012, 42, 1531–1542. [Google Scholar] [CrossRef]
- Banić, M.; Miltenović, A.; Pavlović, M.; Ćirić, I. Intelligent machine vision based railway infrastructure inspection and monitoring using UAV. Facta Univ. Ser. Mech. Eng. 2019, 17, 357–364. [Google Scholar] [CrossRef]
- Dong, C.; Mao, Q.; Ren, X.; Kou, D.; Qin, J.; Hu, W. Algorithms and instrument for rapid detection of rail surface defects and vertical short-wave irregularities based on fog and odometer. IEEE Access 2019, 7, 31558–31572. [Google Scholar] [CrossRef]
- Molodova, M.; Li, Z.; Núñez, A.; Dollevoet, R. Automatic detection of squats in railway infrastructure. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1980–1990. [Google Scholar] [CrossRef]
- Kishore, M.B.; Park, J.W.; Song, S.J.; Kim, H.J.; Kwon, S.G. Characterization of defects on rail surface using eddy current technique. J. Mech. Sci. Technol. 2019, 33, 4209–4215. [Google Scholar] [CrossRef]
- Wei, X.; Yang, Z.; Liu, Y.; Wei, D.; Jia, L.; Li, Y. Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study. Eng. Appl. Artif. Intell. 2019, 80, 66–81. [Google Scholar] [CrossRef]
- Ling, C.; Guo, J.; Gao, X.; Wang, Z.; Li, J. Research on rail defect detection system based on FPGA. In Proceedings of the 2016 IEEE Far East NDT New Technology & Application Forum (FENDT), Nanchang, China, 22–24 June 2016; pp. 195–200. [Google Scholar]
- di Scalea, F.L.; Bartoli, I.; Rizzo, P.; Fateh, M. High-speed defect detection in rails by noncontact guided ultrasonic testing. Transp. Res. Rec. 2005, 1916, 66–77. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, X.; Shen, Y.; Song, S.; Song, Q.; Cui, J.; Jie, H.; Zhao, Z. Rail Crack Detection Using Optimal Local Mean Decomposition and Cepstral Information Coefficient Based on Electromagnetic Acoustic Emission Technology. IEEE Trans. Instrum. Meas. 2024, 73, 9506412. [Google Scholar] [CrossRef]
- Dike, H.U.; Zhou, Y.; Deveerasetty, K.K.; Wu, Q. Unsupervised learning based on artificial neural network: A review. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 322–327. [Google Scholar]
- Acikgoz, H.; Korkmaz, D. MSRConvNet: Classification of railway track defects using multi-scale residual convolutional neural network. Eng. Appl. Artif. Intell. 2023, 121, 105965. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; He, Q.; Yu, T.; Zhang, M.; Wang, P. CUFuse: Camera and ultrasound data fusion for rail defect detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21971–21983. [Google Scholar] [CrossRef]
- Sahebdivani, S.; Arefi, H.; Maboudi, M. Rail track detection and projection-based 3D modeling from UAV point cloud. Sensors 2020, 20, 5220. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Yan, H.; Liu, Z.; Chen, N.; Miao, Y.; Hou, Y. Automatic pavement texture recognition using lightweight few-shot learning. Philos. Trans. R. Soc. A 2023, 381, 20220166. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Wu, Y.; Xin, X.; Yang, L.; Yang, M.; Chen, H.; Liu, C.; Hu, M.; Chai, X.; Li, J. Real-time tunnel crack analysis system via deep learning. IEEE Access 2019, 7, 64186–64197. [Google Scholar] [CrossRef]
- Mahmud, I.; Kabir, M.; Shin, J.; Mistry, C.; Tomioka, Y.; Mridha, M.F. Advancing Wildlife Protection: Mask R-CNN for Rail Track Identification and Unwanted Object Detection. IEEE Access 2023, 11, 99519–99534. [Google Scholar] [CrossRef]
- Cai, G.; Fan, B.; Dong, Y.; Li, T.; Wu, Y.; Zhang, Y. Task-efficiency oriented V2X communications: Digital twin meets mobile edge computing. IEEE Wirel. Commun. 2023, 31, 149–155. [Google Scholar] [CrossRef]
- Kim, B.; Kang, J.W.; Kim, C.S.; Kwon, O.K.; Gwak, J. Hybrid Transformer for Anomaly Detection on Railway HVAC Systems Through Feature Ensemble of Spatial–Temporal with Multi-channel GADF Images. J. Electr. Eng. Technol. 2024, 19, 2803–2815. [Google Scholar] [CrossRef]
- Kim, B.; Jeon, Y.; Kang, J.-W.; Gwak, J. Multi-task Transfer Learning Facilitated by Segmentation and Denoising for Anomaly Detection of Rail Fasteners. J. Electr. Eng. Technol. 2023, 18, 2383–2394. [Google Scholar] [CrossRef]
- Feng, H.; Jiang, Z.; Xie, F.; Yang, P.; Shi, J.; Chen, L. Automatic fastener classification and defect detection in vision-based railway inspection systems. IEEE Trans. Instrum. Meas. 2013, 63, 877–888. [Google Scholar] [CrossRef]
- Kim, B.; Kim, I.; Kim, N.; Park, C.; Oh, R.; Gwak, J. SeMA-UNet: A Semi-Supervised Learning with Multimodal Approach of UNet for Effective Segmentation of Key Components in Railway Images. J. Electr. Eng. Technol. 2024, 19, 3317–3330. [Google Scholar] [CrossRef]
- Ye, T.; Zhang, Z.; Zhang, X.; Zhou, F. Autonomous railway traffic object detection using feature-enhanced single-shot detector. IEEE Access 2020, 8, 145182–145193. [Google Scholar] [CrossRef]
- Cai, X.; Tang, X.; Chang, W.; Wang, T.; Lau, A.; Chen, Z.; Qie, L. Machine learning-based rail corrugation recognition: A metro vehicle response and noise perspective. Philos. Trans. R. Soc. A 2023, 381, 20220171. [Google Scholar] [CrossRef]
- Aydin, I.; Akin, E.; Karakose, M. Defect classification based on deep features for railway tracks in sustainable transportation. Appl. Soft Comput. 2021, 111, 107706. [Google Scholar] [CrossRef]
- Aytekin, C.; Rezaeitabar, Y.; Dogru, S.; Ulusoy, I. Railway fastener inspection by real-time machine vision. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 1101–1107. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Liu, J.; Song, H.; Hou, Z.; Dai, P. Ensemble model for rail surface defects detection. PLoS ONE 2022, 17, e0268518. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Cai, L.; Li, C. Rail surface defect detection based on an improved YOLOv5s. Appl. Sci. 2023, 13, 7330. [Google Scholar] [CrossRef]
- Kim, I.; Jeon, Y.; Kang, J.W.; Gwak, J. RAG-PaDiM: Residual attention guided PaDiM for defects segmentation in railway tracks. J. Electr. Eng. Technol. 2023, 18, 1429–1438. [Google Scholar] [CrossRef]
- Min, Y.; Wang, Z.; Liu, Y.; Wang, Z. FS-RSDD: Few-shot rail surface defect detection with prototype learning. Sensors 2023, 23, 7894. [Google Scholar] [CrossRef]
- Zhou, Q. A Detection System for Rail Defects Based on Machine Vision. J. Phys. Conf. Ser. 2021, 1748, 022012. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Wang, C.; Bochkovskiy, A.; Liao, H. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Arthur, D.; Vassilvitskii, S. k-means++: The Advantages of Careful Seeding; Stanford: Redwood City, CA, USA, 2006. [Google Scholar]
- Zoph, B.; Cubuk, E.D.; Ghiasi, G.; Lin, T.-Y.; Shlens, J.; Le, Q.V. Learning data augmentation strategies for object detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XXVII 16; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 566–583. [Google Scholar]
MobileNetV3 | EIOU | k-means++ | Input/(Pixel × Pixel) | AP/(%) | [email protected]/(%) | ||
---|---|---|---|---|---|---|---|
Joint | Squats | Ssquats | |||||
× | × | × | 640 × 640 | 99.4 | 95.8 | 75.5 | 90.2 |
√ | × | × | 640 × 640 | 99.6 | 96.3 | 79.5 | 91.8 |
√ | √ | × | 640 × 640 | 99.6 | 96.0 | 87.3 | 94.3 |
√ | √ | √ | 640 × 640 | 99.6 | 96.4 | 89.6 | 95.2 |
Model | Precision (%) | Recall (%) | [email protected] (%) | F1 |
---|---|---|---|---|
Faster RCNN | 82.1 | 90.1 | 87.4 | 0.86 |
YOLOv5s | 90.3 | 89.4 | 93.9 | 0.90 |
YOLOv7 | 84.4 | 90.2 | 90.3 | 0.87 |
Ours | 94.9 | 90.6 | 95.2 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Feng, T.; Song, Y.; Shi, Y.; Cai, G. An Improved Target Network Model for Rail Surface Defect Detection. Appl. Sci. 2024, 14, 6467. https://doi.org/10.3390/app14156467
Zhang Y, Feng T, Song Y, Shi Y, Cai G. An Improved Target Network Model for Rail Surface Defect Detection. Applied Sciences. 2024; 14(15):6467. https://doi.org/10.3390/app14156467
Chicago/Turabian StyleZhang, Ye, Tianshi Feng, Yating Song, Yuhang Shi, and Guoqiang Cai. 2024. "An Improved Target Network Model for Rail Surface Defect Detection" Applied Sciences 14, no. 15: 6467. https://doi.org/10.3390/app14156467
APA StyleZhang, Y., Feng, T., Song, Y., Shi, Y., & Cai, G. (2024). An Improved Target Network Model for Rail Surface Defect Detection. Applied Sciences, 14(15), 6467. https://doi.org/10.3390/app14156467