The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques
Abstract
:1. Introduction
2. Existing Studies Related to the Level of Service in Metro Stations
3. Method
3.1. Metro Stations in Valparaíso
3.2. Observations inside the Train and on the Platform
- Seats.
- Central hall (in front of the train doors).
- Corridors.
3.3. Tracking Technique
4. Results
4.1. Descriptive Analysis
4.2. Regression Model Analysis
- Speed: dependent;
- Dispersion: independent;
- Type of passenger: independent;
- Platform features: independent;
- Detected passengers: independent.
β4⋅Detected Passengers + ϵ
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Empresa de los Ferrocarriles del Estado (EFE). Memoria Anual Empresa de los Ferrocarriles del Estado; Empresa de los Ferrocarriles del Estado: Valparaíso, Chile, 2022. (In Spanish) [Google Scholar]
- Office of Rail and Road (ORR). Passenger Rail Usage. UK. 2022. Available online: https://dataportal.orr.gov.uk/statistics/usage/passenger-rail-usage/#:~:text=A%20total%20of%20417%20million,year%20to%2031%20December%202023 (accessed on 14 May 2024).
- TRB. National Research Council, Highway Capacity Manual 2010; TRB: Washington, DC, USA, 2010. [Google Scholar]
- Seriani, S.; Fernández, R. Planning guidelines for metro–bus interchanges by means of a pedestrian microsimulation model. Transp. Plan. Technol. 2015, 38, 569–583. [Google Scholar] [CrossRef]
- Seriani, S.; Fujiyama, T.; Holloway, C. Exploring the pedestrian level of interaction on platform conflict areas at metro stations by real-scale laboratory experiments. Transp. Plan. Technol. 2017, 40, 100–118. [Google Scholar] [CrossRef]
- Fruin, J.J. Pedestrian Planning and Design; Metropolitan Association of Urban Designers and Environmental Planners: New York, NY, USA, 1971. [Google Scholar]
- Seyfried, A.; Steffen, B.; Klingsch, W.; Boltes, M. The fundamental diagram of pedestrian movement revisited. J. Stat. Mech. Theory Exp. 2005, 2005, P10002. [Google Scholar] [CrossRef]
- Bellomo, N.; Liao, J.; Quaini, A.; Russo, L.; Siettos, C. Human behavioral crowds: Review, critical analysis, and research perspectives. Math. Models Methods Appl. Sci. 2023, 33, 1611–1659. [Google Scholar] [CrossRef]
- Evans, G.W.; Wener, R.E. Crowding and personal space invasion on the train: Please don’t make me sit in the middle. J. Environ. Psychol. 2007, 27, 90–94. [Google Scholar] [CrossRef]
- Yang, J.; Shiwakoti, N.; Tay, R. Train passengers’ perceptions and preferences for different platform and carriage design features. J. Public Transp. 2024, 26, 100085. [Google Scholar] [CrossRef]
- Boltes, M.; Seyfried, A. Collecting pedestrian trajectories. Neurocomputing 2013, 100, 127–133. [Google Scholar] [CrossRef]
- Aguayo, P.; Seriani, S.; Delpiano, J.; Farias, G.; Fujiyama, T.; Velastin, S.A. Experimental Method to Estimate the Density of Passengers on Urban Railway Platforms. Sustainability 2023, 15, 1000. [Google Scholar] [CrossRef]
- Polus, A.; Schofer, J.L.; Ushpiz, A. Pedestrian flow and level of service. J. Transp. Eng. 1983, 109, 46–56. [Google Scholar] [CrossRef]
- Mōri, M.; Tsukaguchi, H. A new method for evaluation of level of service in pedestrian facilities. Transp. Res. Part A Gen. 1987, 21, 223–234. [Google Scholar] [CrossRef]
- Weidmann, U. Transporttechnik der Fussgaenger; Schriftenreihe Ivt-Berichte 90; ETH: Zurich, Switzerland, 1993. (In German) [Google Scholar]
- Cheung, C.Y.; Lam, W.H.K. Pedestrian Route Choices between Escalator and Stairway in MTR Stations. J. Transp. Eng. 1998, 124, 277–285. [Google Scholar] [CrossRef]
- Jelić, A.; Appert-Rolland, C.; Lemercier, S.; Pettré, J. Properties of pedestrians walking in line. II. Stepping behavior. Phys. Rev. E 2012, 86, 046111. [Google Scholar] [CrossRef] [PubMed]
- Daamen, W.; Hoogendoorn, S.P.; Bovy, P.H. First-order pedestrian traffic flow theory. Transp. Res. Rec. 2005, 1934, 43–52. [Google Scholar] [CrossRef]
- Porter, E.; Hamdar, S.H.; Daamen, W. Pedestrian dynamics at transit stations: An integrated pedestrian flow modeling approach. Transp. A Transp. Sci. 2018, 14, 468–483. [Google Scholar] [CrossRef]
- Feng, Y.; Duives, D.; Daamen, W.; Hoogendoorn, S. Data collection methods for studying pedestrian behaviour: A systematic review. J. Affect. Disord. 2021, 187, 107329. [Google Scholar] [CrossRef]
- Teknomo, K.; Takeyama, Y.; Inamura, H. Determination of pedestrian flow performance based on video tracking and microscopic simulations. arXiv 2016, arXiv:1609.02243. [Google Scholar]
- Vanumu, L.D.; Rao, K.R.; Tiwari, G. Fundamental diagrams of pedestrian flow characteristics: A review. Eur. Transp. Res. Rev. 2017, 9, 49. [Google Scholar] [CrossRef]
- Berrou, J.L.; Beecham, J.; Quaglia, P.; Kagarlis, M.A.; Gerodimos, A. Calibration and validation of the Legion simulation model using empirical data. In Pedestrian and Evacuation Dynamics 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 167–181. [Google Scholar]
- Banerjee, A.; Maurya, A.K.; Lämmel, G. A review of pedestrian flow characteristics and level of service over different pedestrian facilities. Collect. Dyn. 2018, 3, 1–52. [Google Scholar]
- Hu, M.; Lu, L.; Yang, J. Exploring an estimation approach for the pedestrian level of service for metro stations based on an interaction index. Transp. Lett. 2020, 12, 417–426. [Google Scholar] [CrossRef]
- Azadpeyma, A.; Kashi, E. Level of Service Analysis for Metro Station with Transit Cooperative Research Program (TCRP) Manual: A Case Study—Shohada Station in Iran. Urban Rail Transit 2019, 5, 39–47. [Google Scholar] [CrossRef]
- Wen, Y.; Yan, K.; Yu, C. Level of service standards for pedestrian facilities in shanghai metro stations. In Proceedings of the International Conference on Transportation Engineering 2007, Chengdu, China, 22–24 July 2007; pp. 2072–2078. [Google Scholar]
- Hänseler, F.S.; Bierlaire, M.; Scarinci, R. Assessing the usage and level-of-service of pedestrian facilities in train stations: A Swiss case study. Transp. Res. Part A Policy Prac. 2016, 89, 106–123. [Google Scholar] [CrossRef]
- Liang, J.; Lyu, G.; Teo, C.-P.; Gao, Z. Online Passenger Flow Control in Metro Lines. Oper. Res. 2023, 71, 768–775. [Google Scholar] [CrossRef]
- Li, Z.; Lo, S.; Ma, J.; Luo, X. A study on passengers’ alighting and boarding process at metro platform by computer simulation. Transp. Res. Part A Policy Prac. 2020, 132, 840–854. [Google Scholar] [CrossRef]
- Fu, L.; Chen, Q.; Shi, Q.; Chen, Y.; Shi, Y. Characteristics of pedestrians’ alighting and boarding process in metro stations. Tunn. Undergr. Space Technol. 2023, 141, 105362. [Google Scholar] [CrossRef]
- Mow, C.; Seriani, S.; Fujiyama, T. Where and how often do people touch train interiors? An investigation during the pandemic. In Proceedings of the Institution of Civil Engineers-Municipal Engineer; Emerald Group Publishing Ltd.: Bingley, UK, 2024; Volume 17. [Google Scholar]
- Seriani, S.; Aprigliano, V.; Gonzalez, S.; Baeza, G.; Lopez, A.; Fujiyama, T. The Effect of Seat Layout on the Interaction of Passengers Inside the Train Carriage: An Experimental Approach for Urban Services. Sustainability 2024, 16, 998. [Google Scholar] [CrossRef]
- Munawar, I. Yolov7-Object-Tracking. 2023. Available online: https://github.com/RizwanMunawar/yolov7-object-tracking (accessed on 22 May 2024).
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014, Proceedings of the 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Garcia, G.; Velastin, S.A.; Lastra, N.; Ramirez, H.; Seriani, S.; Farias, G. Train Station Pedestrian Monitoring Pilot Study Using an Artificial Intelligence Approach. Sensors 2024, 24, 3377. [Google Scholar] [CrossRef]
Dimension | Variable | Description |
---|---|---|
1. Passenger behaviour | Detected passengers | Number of passengers detected |
Speed | Component in x-axis and y-axis, which then is obtained by the absolute value (i.e., not the vector) (m/s) | |
Dispersion | Standard deviation of the average distance between passengers (m) | |
2. Train design | Seats, corridors, and central halls | Number, type, and dimensions |
3. Passenger characteristics | Type of passenger | e.g., children or adults |
Height | Height per passenger in each detection (m) | |
4. Train operation | Moment of the day | e.g., peak hour |
Train arrival | e.g., presence of the train at the platform | |
5. Platform built environment | Platform location | e.g., inbound or outbound |
Platform features | e.g., benches and bins |
Independent Variables | Coefficient (7:00 a.m.–7:20 a.m.) | Coefficient (7:20 a.m.–7:40 a.m.) | Coefficient (7:40 a.m.–8:00 a.m.) |
---|---|---|---|
Platform features | −0.170051 *** | 0.020419 *** | −0.351792 *** |
Type of passenger | 0.186987 *** | −0.109071 *** | 0.400202 *** |
Detected passengers | 0.046950 *** | 0.009448 *** | 0.018714 *** |
Dispersion | 0.136052 *** | 0.003626 * | −0.232739 *** |
Constant | −0.034553 | 0.117472 *** | 0.755561 *** |
R-squared | 0.477861 | 0.097675 | 0.09881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seriani, S.; Aprigliano, V.; Garcia, G.; Lopez, A.; Fujiyama, T. The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques. Appl. Sci. 2024, 14, 6515. https://doi.org/10.3390/app14156515
Seriani S, Aprigliano V, Garcia G, Lopez A, Fujiyama T. The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques. Applied Sciences. 2024; 14(15):6515. https://doi.org/10.3390/app14156515
Chicago/Turabian StyleSeriani, Sebastian, Vicente Aprigliano, Gonzalo Garcia, Ariel Lopez, and Taku Fujiyama. 2024. "The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques" Applied Sciences 14, no. 15: 6515. https://doi.org/10.3390/app14156515
APA StyleSeriani, S., Aprigliano, V., Garcia, G., Lopez, A., & Fujiyama, T. (2024). The Pedestrian Level of Service in Metro Stations: A Pilot Study Based on Passenger Detection Techniques. Applied Sciences, 14(15), 6515. https://doi.org/10.3390/app14156515