Plastome Evolution of Asyneuma japonicum: Insights into Structural Variation, Genomic Divergence, and Phylogenetic Tree
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequencing, Assembly, and Annotation
2.2. Codon Usage and Repetitive DNA Sequences
2.3. Comparison of Plastome Structure and Genomic Divergence
2.4. Phylogenetic Diversity
3. Results and Discussion
3.1. Plastome Features of A. japonicum
3.2. Plastome Structure with Codon Usage and Repeat Sequences
3.3. Structural Variation Analysis through Boundaries between IR and SC Regions
3.4. Genomic Divergence Comparison through Rearrangements and Divergent Hotspots
3.5. Plastome Diversity Analysis through Phylogenetic Tree
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borsch, T.; Berendsohn, W.; Dalcin, E.; Delmas, M.; Demissew, S.; Elliott, A.; Fritsch, P.; Fuchs, A.; Geltman, D.; Güner, A.; et al. World Flora Online: Placing taxonomists at the heart of a definitive and comprehensive global resource on the world’s plants. Taxon 2020, 69, 1311–1341. [Google Scholar] [CrossRef]
- Hassler, M. World Plants. Synonymic Checklist and Distribution of the World Flora. Version 19.2. Last Update 17 April 2024. Available online: https://www.worldplants.de (accessed on 25 April 2024).
- Lakušić, D.; Eddie, W.M.; Shuka, L.; Lazarević, M.; Barina, Z. The evolving “fate” of Asyneuma comosiforme: Validation of Hayekia, a new monotypic genus of Campanulaceae from Albania. Willdenowia 2019, 49, 81–93. [Google Scholar] [CrossRef]
- Andreychuk, R.R.; Kolomiychuk, V.P.; Odintsova, A.V. Morpho-anatomical structure and development of fruit in Asyneuma canescens (Саmpanulaceae). Regul. Mech. Biosyst. 2020, 11, 513–519. [Google Scholar] [CrossRef]
- Zoschke, R.; Bock, R. Chloroplast translation: Structural and functional organization, operational control, and regulation. Plant Cell 2018, 30, 745–770. [Google Scholar] [CrossRef]
- Roston, R.L.; Jouhet, J.; Yu, F.; Gao, H. Editorial: Structure and Function of Chloroplasts. Front. Plant Sci. 2018, 9, 1656. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, S.; Liu, Y.; Yuan, Q.; Sun, J.; Guo, L. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genom. 2021, 22, 103. [Google Scholar] [CrossRef]
- Yang, Q.; Fu, G.F.; Wu, Z.Q.; Li, L.; Zhao, J.L.; Li, Q.J. Chloroplast Genome Evolution in Four Montane Zingiberaceae Taxa in China. Front. Plant Sci. 2021, 12, 774482. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast Genomes: Diversity, Evolution, and Applications in Genetic Engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Mower, J.P.; Vickrey, T.L. Structural diversity among plastid genomes of land plants. In Advances in Botanical Research; Chaw, S.M., Jansen, R.K., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 58, pp. 263–292. [Google Scholar]
- Dobrogojski, J.; Adamiec, M.; Lucinski, R. The chloroplast genome: A review. Acta Physiol. Plant 2020, 42, 98. [Google Scholar] [CrossRef]
- Yoon, W.S.; Kim, C.K.; Kim, Y.K. The First Complete Chloroplast Genome of Campanula carpatica: Genome Characterization and Phylogenetic Diversity. Genes 2023, 14, 1597. [Google Scholar] [CrossRef]
- Cosner, M.E.; Raubeson, L.A.; Jansen, R.K. Chloroplast DNA rearrangements in Campanulaceae: Phylogenetic utility of highly rearranged genomes. BMC Evol. Biol. 2004, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Knox, E.B. The dynamic history of plastid genomes in the Campanulaceae sensu lato is unique among angiosperms. Proc. Natl. Acad. Sci. USA 2014, 111, 11097–11102. [Google Scholar] [CrossRef] [PubMed]
- Li, C.J.; Wang, R.N.; Li, D.Z. Comparative analysis of plastid genomes within the Campanulaceae and phylogenetic implications. PLoS ONE 2020, 15, e0233167. [Google Scholar] [CrossRef] [PubMed]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef] [PubMed]
- Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012, 28, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ni, Y.; Li, J.; Zhang, X.; Yang, H.; Chen, H.; Liu, C. CPGView: A package for visualizing detailed chloroplast genome structures. Mol. Ecol. Resour. 2023, 23, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xu, W.; Lu, X.; Wang, L. Analysis of codon usage bias of chloroplast genomes in Gynostemma species. Physiol. Mol. Biol. Plants 2021, 27, 2727–2737. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Abduraimov, O.; Tojibaev, K.; Shomurodov, K.; Zhang, Y.-M.; Li, W.-J. Analysis of complete chloroplast genome sequences and insight into the phylogenetic relationships of Ferula L. BMC Genom. 2022, 23, 643. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2018, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, K.; Nimura, K. Regulation of RNA Splicing: Aberrant Splicing Regulation and Therapeutic Targets in Cancer. Cells 2021, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.L.; Hong, Z.H.; Wang, Y.; Wu, G.Z. Chloroplast proteostasis: A story of birth, life, and death. Plant Commun. 2023, 4, 100424. [Google Scholar] [CrossRef]
- Xiang, Y.L.; Jin, X.J.; Shen, C.; Cheng, X.F.; Shu, L.; Zhu, R.L. New insights into the phylogeny of the complex thalloid liverworts (Marchantiopsida) based on chloroplast genomes. Cladistics 2022, 38, 649–662. [Google Scholar] [CrossRef]
- Scobeyeva, V.A.; Artyushin, I.V.; Krinitsina, A.A.; Nikitin, P.A.; Antipin, M.I.; Kuptsov, S.V.; Belenikin, M.S.; Omelchenko, D.O.; Logacheva, M.D.; Konorov, E.A.; et al. Gene Loss, Pseudogenization in Plastomes of Genus Allium (Amaryllidaceae), and Putative Selection for Adaptation to Environmental Conditions. Front. Genet. 2021, 12, 674783. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Riaz, R.; Majid, M.; Mehmood, K.; Mustafa, G.; Joyia, F.A. The tobacco chloroplast YCF4 gene is essential for transcriptional gene regulation and plants photoautotrophic growth. Front. Plant Sci. 2022, 13, 1014236. [Google Scholar] [CrossRef]
- Yang, T.; Sahu, S.K.; Yang, L.; Liu, Y.; Mu, W.; Liu, X.; Strube, M.L.; Liu, H.; Zhong, B. Comparative analyses of 3,654 plastid genomes unravel insights into evolutionary dynamics and phylogenetic discordance of green plants. Front Plant Sci. 2022, 13, 808156. [Google Scholar] [CrossRef]
- Dong, W.; Xu, C.; Li, C.; Sun, J.; Zuo, Y.; Shi, S.; Cheng, T.; Guo, J.; Zhou, S. Ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 2015, 5, 8348. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Qian, F.; Hou, Y.; Yang, W.; Cai, M.; Wu, X. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa (Brassicaceae). PLoS ONE 2021, 16, e0248556. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Z.; Lehtonen, S.; Chen, J.M. The dynamic history of plastome structure across aquatic subclass Alismatidae. BMC Plant Biol. 2023, 23, 125. [Google Scholar] [CrossRef]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2021, 49, 539–565. [Google Scholar] [CrossRef]
- Zeng, Y.-J.; Shen, L.-W.; Chen, S.-Q.; Qu, S.; Hou, N. Codon usage profiling of chloroplast genome in Juglandaceae. Forests 2023, 14, 378. [Google Scholar] [CrossRef]
- Yang, L.; Deng, S.; Zhu, Y.; Da, Q. Comparative chloroplast genomics of 34 species in subtribe Swertiinae (Gentianaceae) with implications for its phylogeny. BMC Plant Biol. 2023, 23, 164. [Google Scholar] [CrossRef]
- Du, X.; Zeng, T.; Feng, Q.; Hu, L.; Luo, X.; Weng, Q.; Zhu, B. The Complete Chloroplast Genome Sequence of Yellow Mustard (Sinapis alba L.) and Its Phylogenetic Relationship to Other Brassicaceae Species. Gene 2020, 731, 144340. [Google Scholar] [CrossRef] [PubMed]
- Charboneau, J.L.M.; Cronn, R.C.; Liston, A.; Wojciechowski, M.F.; Sanderson, M.J. Plastome structural evolution and homoplastic inversions in Neo-Astragalus (Fabaceae). Genome Biol. Evol. 2021, 13, evab215. [Google Scholar] [CrossRef]
- Bhattarai, G.; Shi, A.; Kandel, D.R.; Solis-Gracia, N.; da Silva, J.A.; Avila, C.A. Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions. Sci. Rep. 2021, 11, 9999. [Google Scholar] [CrossRef]
- Monzon, A.M.; Arrías, P.N.; Elofsson, A.; Mier, P.; Andrade-Navarro, M.A.; Bevilacqua, M.; Clementel, D.; Bateman, A.; Hirsh, L.; Fornasari, M.S.; et al. A STRP-ed definition of Structured Tandem Repeats in Proteins. J. Struct. Biol. 2023, 215, 108023. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, L.; Chen, H.; Jiang, M.; Wu, W.; Liu, S.; Wang, J.; Liu, C. Phylogenetic Analysis and Development of Molecular Markers for Five Medicinal Alpinia Species Based on Complete Plastome Sequences. BMC Plant Biol. 2021, 21, 431. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zheng, Y.; Jiang, Y.; Pei, J.; Huang, L. Phylogenetic relationships, selective pressure and molecular markers development of six species in subfamily Polygonoideae based on complete chloroplast genomes. Sci. Rep. 2024, 14, 9783. [Google Scholar] [CrossRef] [PubMed]
- Machado, L.O.; Vieira, L.N.; Stefenon, V.M.; Faoro, H.; Pedrosa, F.O.; Guerra, M.P.; Nodari, R.O. Molecular relationships of Campomanesia xanthocarpa within Myrtaceae based on the complete plastome sequence and on the plastid ycf2 gene. Genet. Mol. Biol. 2020, 43, e20180377. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Tian, J.; Yang, J.; Dong, X.; Zhong, Z.; Mwachala, G.; Zhang, C.; Hu, G.; Wang, Q. Comparative and phylogenetic analyses of six Kenya Polystachya (Orchidaceae) species based on the complete chloroplast genome sequences. BMC Plant Biol. 2022, 22, 177. [Google Scholar] [CrossRef]
- Gu, X.; Zhu, M.; Su, Y.; Wang, T. A Large Intergenic Spacer Leads to the Increase in Genome Size and Sequential Gene Movement around IR/SC Boundaries in the Chloroplast Genome of Adiantum malesianum (Pteridaceae). Int. J. Mol. Sci. 2022, 23, 15616. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Chen, J.; Li, Y.; Liu, A.; Li, A.; Yin, M.; Shrestha, N.; Liu, J.; Ren, G. Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives. BMC Plant Biol. 2021, 21, 421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Rong, C.; Qin, L.; Mo, C.; Fan, L.; Yan, J.; Zhang, M. Complete chloroplast genome sequence of Malus hupehensis: Genome structure, comparative analysis, and phylogenetic relationships. Molecules 2018, 23, 2917. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Li, Y.; Budhathoki, R.; Shi, J.; Yer, H.; Li, X.; Yan, B.; Wang, Q.; Wen, Y.; Huang, M.; et al. Complete chloroplast genomes of Impatiens cyanantha and Impatiens monticola: Insights into genome structures, mutational hotspots, comparative and phylogenetic analysis with its congeneric species. PLoS ONE 2021, 16, e0248182. [Google Scholar] [CrossRef]
- Lian, C.; Yang, H.; Lan, J.; Zhang, X.; Zhang, F.; Yang, J.; Chen, S. Comparative analysis of chloroplast genomes reveals phylogenetic relationships and intraspecific variation in the medicinal plant Isodon rubescens. PLoS ONE 2022, 17, e0266546. [Google Scholar] [CrossRef]
- Kagame, S.P.; Gichira, A.W.; Chen, L.Y.; Wang, Q.F. Systematics of Lobelioideae (Campanulaceae): Review, phylogenetic and biogeographic analyses. PhytoKeys 2021, 174, 13. [Google Scholar] [CrossRef] [PubMed]
Category | Group | Gene Name |
---|---|---|
Photosynthesis | Photosystem I | psaA, psaB, psaC, psaI, psaJ, ycf3 **, ycf4 |
Photosystem II | psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z | |
NADH 1 | ndhA *, B *, C, D, E, F, G, H, I, J, K | |
ATP synthase | atpA, B, E, F *, H, I | |
Cytochrome 2 | petA, B *, D *, G, L, N | |
Rubisco unit | rbcL | |
Self-replication | Small ribosome | rps2, 3, 4, 7, 8, 11, 12 **, 14, 15, 16, 18, 19 |
Large ribosome | rpl2 *, 14, 16 *, 20, 22, 33, 36 | |
RNA polymerase | rpoA, B, C1 *, C2 | |
Ribosomal RNA | rrn4.5, 5, 16, 23 | |
Transfer RNA | trnA-UGC *, trnC-GCA, trnD-GUC, trnE-UUC, trnfM-CAU, trnF-GAA, trnG-GCC, trnG-UCC *, trnH-GUG, trnI-CAU, trnI-GAU *, trnK-UUU *, trnL-CAA, trnL-UAA *, trnL-UAG, trnM-CAU, trnN-GUU, trnP-UGG, trnQ-UUG, trnR-AGC, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC, trnV-UAC *, trnW-CCA, trnY-GUA | |
Other genes | C-types cytochromes (ccsA), envelope membrane proteins (cemA), protease (clpP **), maturase (matK), unknown (ycf1, ycf2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, B.-S.; Yoon, W.-S.; Kim, C.-K.; Kim, Y.-K. Plastome Evolution of Asyneuma japonicum: Insights into Structural Variation, Genomic Divergence, and Phylogenetic Tree. Appl. Sci. 2024, 14, 6572. https://doi.org/10.3390/app14156572
Park B-S, Yoon W-S, Kim C-K, Kim Y-K. Plastome Evolution of Asyneuma japonicum: Insights into Structural Variation, Genomic Divergence, and Phylogenetic Tree. Applied Sciences. 2024; 14(15):6572. https://doi.org/10.3390/app14156572
Chicago/Turabian StylePark, Byeong-Seon, Won-Sub Yoon, Chang-Kug Kim, and Yong-Kab Kim. 2024. "Plastome Evolution of Asyneuma japonicum: Insights into Structural Variation, Genomic Divergence, and Phylogenetic Tree" Applied Sciences 14, no. 15: 6572. https://doi.org/10.3390/app14156572
APA StylePark, B. -S., Yoon, W. -S., Kim, C. -K., & Kim, Y. -K. (2024). Plastome Evolution of Asyneuma japonicum: Insights into Structural Variation, Genomic Divergence, and Phylogenetic Tree. Applied Sciences, 14(15), 6572. https://doi.org/10.3390/app14156572