Influences of Different Selective Laser Melting Machines on the Microstructures and Mechanical Properties of Co–Cr–Mo Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Mechanical Properties
2.3. Microstructural Analysis
3. Results
3.1. Microstructural Analysis
3.2. Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Li, H.; Zhao, Y.; Zhang, X.; Wang, Y.; Lyu, P. Adaptation of removable partial denture frameworks fabricated by selective laser melting. J. Prosthet. Dent. 2019, 122, 316–324. [Google Scholar] [CrossRef]
- Kittikundecha, N.; Kajima, Y.; Takaichi, A.; Cho, H.H.W.; Htat, H.L.; Doi, H.; Takahashi, H.; Hanawa, T.; Wakabayashi, N. Fatigue properties of removable partial denture clasps fabricated by selective laser melting followed by heat treatment. J. Mech. Behav. Biomed. Mater. 2019, 98, 79–89. [Google Scholar] [CrossRef]
- Kajima, Y.; Takaichi, A.; Kittikundecha, N.; Nakamoto, T.; Kimura, T.; Nomura, N.; Kawasaki, A.; Hanawa, T.; Takahashi, H.; Wakabayashi, N. Effect of heat-treatment temperature on microstructures and mechanical properties of Co-Cr-Mo alloys fabricated by selective laser melting. Mater. Sci. Eng. A 2018, 726, 21–31. [Google Scholar] [CrossRef]
- Lu, Y.J.; Wu, S.Q.; Gan, Y.L.; Zhang, S.Y.; Guo, S.; Lin, J.J.; Lin, J.X. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions. J. Mech. Behav. Biomed. Mater. 2016, 55, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Takaichi, A.; Suyalatu; Nakamoto, T.; Joko, N.; Nomura, N.; Tsutsumi, Y.; Migita, S.; Doi, H.; Kurosu, S.; Chiba, A.; et al. Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications. J. Mech. Behav. Biomed. Mater. 2013, 21, 67–76. [Google Scholar] [CrossRef]
- Hedberg, Y.S.; Qian, B.; Shen, Z.; Virtanen, S.; Wallinder, I.O. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting. Dent. Mater. 2014, 30, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Kajima, Y.; Takaichi, A.; Kittikundecha, N.; Htat, H.L.; Cho, H.H.W.; Tsutsumi, Y.; Hanawa, T.; Wakabayashi, N.; Yoneyama, T. Reduction in anisotropic response of corrosion properties of selective laser melted Co–Cr–Mo alloys by post-heat treatment. Dent. Mater. 2021, 37, e98–e108. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, X.; Xu, B.; Ma, J.; Zhao, C.; Shen, Z.; Liu, W. Morphological development of sub-grain cellular/bands microstructures in selective laser melting. Materials 2019, 12, 1204. [Google Scholar] [CrossRef]
- Cho, H.H.W.; Takaichi, A.; Kajima, Y.; Htat, H.L.; Kittikundecha, N.; Hanawa, T.; Wakabayashi, N. Effect of post-heat treatment cooling conditions on microstructures and fatigue properties of cobalt chromium molybdenum alloy fabricated through selective laser melting. Metals 2021, 11, 1005. [Google Scholar] [CrossRef]
- Song, C.; Zhang, M.; Yang, Y.; Wang, D.; Jia-kuo, Y. Morphology and properties of CoCrMo parts fabricated by selective laser melting. Mater. Sci. Eng. A 2018, 713, 206–213. [Google Scholar] [CrossRef]
- Zhang, M.K.; Yang, Y.Q.; Song, C.H.; Bai, Y.C.; Xiao, Z.F. An investigation into the aging behavior of CoCrMo alloys fabricated by selective laser melting. J. Alloys Compd. 2018, 750, 878–886. [Google Scholar] [CrossRef]
- Yan, X.; Lin, H.; Wu, Y.; Bai, W. Effect of two heat treatments on mechanical properties of selective-laser-melted Co-Cr metal-ceramic alloys for application in thin removable partial dentures. J. Prosthet. Dent. 2018, 119, 1028-e1. [Google Scholar] [CrossRef] [PubMed]
- Kajima, Y.; Takaichi, A.; Htata, H.L.; Hanawa, T.; Wakabayashi, N. Recrystallization behavior of selective laser melted Co-Cr-Mo alloys with several heat treatment times. Mater. Sci. Eng. A 2022, 856, 143998. [Google Scholar] [CrossRef]
- Chia, V.A.P.; Toh, Y.L.S.; Quek, H.C.; Pokharkar, Y.; Yap, A.U.; Yu, N. Comparative clinical evaluation of removable partial denture frameworks fabricated traditionally or with selective laser melting: A randomized controlled trial. J. Prosthet. Dent. 2024, 131, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Tasaka, A.; Shimizu, T.; Kato, Y.; Okano, H.; Ida, Y.; Higuchi, S.; Yamashita, S. Accuracy of removable partial denture framework fabricated by casting with a 3D printed pattern and selective laser sintering. J. Prosthodont. Res. 2020, 64, 224–230. [Google Scholar] [CrossRef]
- Revilla-León, M.; Gómez-Polo, M.; Barmak, A.B.; Yilmaz, B.; Rutkunas, V.; Kois, J.C. Influence of the manufacturing trinomial (technology, printer, and material) on the marginal and internal discrepancies of printed metal frameworks for the fabrication of tooth-supported prostheses: A systematic review and meta-analysis. Int. J. Prosthodont. 2024, 37, 285–307. [Google Scholar] [CrossRef]
- Takaichi, A.; Fueki, K.; Murakami, N.; Ueno, T.; Inamochi, Y.; Wada, J.; Arai, Y.; Wakabayashi, N. A systematic review of digital removable partial dentures. Part II: CAD/CAM framework, artificial teeth, and denture base. J. Prosthodont. Res. 2022, 66, 53–67. [Google Scholar] [CrossRef]
- Kim, E.H.; Lee, D.H.; Kwon, S.M.; Kwon, T.Y. A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems. J. Prosthet. Dent. 2017, 117, 393–399. [Google Scholar] [CrossRef]
- Alageel, O.; Abdallah, M.N.; Alsheghri, A.; Song, J.; Caron, E.; Tamimi, F. Removable partial denture alloys processed by laser-sintering technique. J. Biomed. Mater. Res. B 2018, 106, 1174–1185. [Google Scholar] [CrossRef]
- Viderscak, D.; Schauperl, Z.; Solic, S.; Catic, A.; Godec, M.; Kocijan, A.; Paulin, I.; Donik, C. Additively manufactured commercial Co-Cr dental alloys: Comparison of microstructure and mechanical properties. Materials 2021, 14, 7350. [Google Scholar] [CrossRef]
- Li, K.; Mao, X.; Khanlari, K.; Song, K.; Shi, Q.; Liu, X. Effects of powder size distribution on the microstructural and mechanical properties of a Co-Cr-W-Si alloy fabricated by selective laser melting. J. Alloys Compd. 2020, 825, 12. [Google Scholar]
- Miao, X.J.; Liu, X.; Lu, P.P.; Han, J.T.; Duan, W.P.; Wu, M.P. Influence of scanning strategy on the performances of GO-reinforced Ti6Al4V nanocomposites manufactured by SLM. Metals 2020, 10, 1379. [Google Scholar] [CrossRef]
- Liu, W.; Xie, Q.S.; Cao, Y.; Wang, J.H.; Bai, P.K. Optimization of processing parameters for LPBF-manufactured CoCr alloys based on laser volume energy density. J. Mater. Res. Technol. 2023, 27, 4053–4063. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Li, W.P.; Zhang, L.; Zhou, S.Y.; Jia, X.; Wang, D.W.; Yan, M. Selective laser melting of Ti-22Al-25Nb intermetallic: Significant effects of hatch distance on microstructural features and mechanical properties. J. Mater. Process Technol. 2020, 276, 116398. [Google Scholar] [CrossRef]
- ISO 22674:2022; Dentistry—Metallic Materials for Fixed and Removable Restorations and Appliances. International Organization for Standardization: Geneva, Switzerland, 2022.
- Okazaki, Y.; Ishino, A.; Higuchi, S. Chemical, Physical, and Mechanical Properties and Microstructures of Laser-Sintered Co-25Cr-5Mo-5W (SP2) and W-Free Co-28Cr-6Mo Alloys for Dental Applications. Materials 2019, 24, 4039. [Google Scholar] [CrossRef]
- Pauzon, C.; Hryha, E.; Forêt, P.; Nyborg, L. Effect of argon and nitrogen atmospheres on the properties of stainless steel 316 L parts produced by laser-powder bed fusion. Mater. Des. 2019, 179, 107873. [Google Scholar] [CrossRef]
- Kajima, Y.; Takaichi, A.; Nakamoto, T.; Kimura, T.; Kittikundecha, N.; Tsutsumi, Y.; Nomura, N.; Kawasaki, A.; Takahashi, H.; Hanawa, T.; et al. Effect of adding support structures for overhanging part on fatigue strength in selective laser melting. J. Mech. Behav. Biomed. Mater. 2018, 78, 1–9. [Google Scholar] [CrossRef]
- Lee, S.; Chiang, C.; Leu, J.; Chen, Y.H. Superplastic elongation characteristic of fine grained magnesium alloy ZK60. Rare Met. 2010, 29, 421–425. [Google Scholar] [CrossRef]
- Al-Aloosi, R.; Çomakli, O.; Yazici, M.; Taha, Z. Influence of Scanning Velocity on a CoCrMoW Alloy Built via Selective Laser Melting: Microstructure, Mechanical, and Tribological Properties. J. Mater. Eng. Perform. 2023, 32, 6717–6724. [Google Scholar] [CrossRef]
- Tonelli, L.; Fortunato, A.; Ceschini, L. CoCr alloy processed by Selective Laser Melting (SLM): Effect of Laser Energy Density on microstructure, surface morphology, and hardness. J. Manuf. Process. 2020, 52, 106–119. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Xu, R.; Zhao, D.; Li, H.; Dong, G. Effects of Scanning Strategy on the Densification and Microhardness of Selective Laser Melting Mg–Y–Sm–Zn–Zr Alloy. Adv. Eng. Mater. 2023, 25, 2201173. [Google Scholar] [CrossRef]
- Kobayashi, H.; Tasaka, A.; Higuchi, S.; Yamashita, S. Influence of molding angle on the trueness and defects of removable partial denture frameworks fabricated by selective laser melting. J. Prosthodont. Res. 2022, 66, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Kamaya, M. Characterization of microstructural damage due to low-cycle fatigue by EBSD observation. Mater. Charact. 2009, 60, 1454–1462. [Google Scholar] [CrossRef]
- Kamaya, M.; Kuroda, M. Fatigue damage evaluation using electron backscatter diffraction. Mater. Trans. 2011, 52, 1168–1176. [Google Scholar] [CrossRef]
- Dong, X.; Zhou, Y.; Qu, Y.; Wu, M.; Sun, Q.; Shi, H.; Peng, H.; Zhang, Y.; Xu, S.; Li, N.; et al. Recrystallization behavior and grain boundary character evolution in Co-Cr alloy from selective laser melting to heat treatment. Mater. Charact. 2022, 185, 111716. [Google Scholar] [CrossRef]
- Song, B.; Dong, S.J.; Liu, Q.; Liao, H.L.; Coddet, C. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior. Mater. Des. 2014, 54, 727–733. [Google Scholar] [CrossRef]
- Ko, K.H.; Kang, H.G.; Huh, Y.H.; Park, C.J.; Cho, L.R. Effects of heat treatment on the microstructure, residual stress, and mechanical properties of Co–Cr alloy fabricated by selective laser melting. J. Mech. Behav. Biomed. Mater. 2022, 126, 105051. [Google Scholar] [CrossRef]
Alloy | Co | Cr | Mo | Si | Mn | Fe | C | Ni |
---|---|---|---|---|---|---|---|---|
MP1 | 60–65 | 26–30 | 5–7 | <1.0 | <1.0 | <0.75 | <0.16 | <0.1 |
Matrix (mass.%) | Co | Cr | Mo | C | Precipitates (mass.%) | Co | Cr | Mo | C |
---|---|---|---|---|---|---|---|---|---|
*1 | 63.27 | 28.45 | 6.41 | 1.87 | *7 | 47.01 | 34.29 | 12.65 | 6.05 |
*2 | 63.05 | 28.29 | 6.54 | 2.11 | *8 | 39.61 | 37.82 | 14.61 | 7.69 |
*3 | 63.16 | 28.53 | 6.47 | 1.85 | *9 | 37.99 | 37.67 | 17.71 | 6.62 |
*4 | 63.49 | 28.2 | 6.44 | 1.87 | *10 | 43.7 | 35.48 | 14.08 | 6.74 |
*5 | 63.01 | 28.63 | 6.64 | 1.72 | *11 | 45.68 | 34.42 | 12.57 | 6.33 |
*6 | 63.26 | 28.33 | 6.5 | 1.85 | *12 | 45.94 | 35.4 | 12.29 | 6.36 |
Properties | As-Built | Heat-Treated | ||
---|---|---|---|---|
M100 | M290 | M100 | M290 | |
UTS (MPa) | 1210 a (24) | 1214 a (38) | 1131 A (17) | 1143 A (37) |
0.2% PS (MPa) | 869 a (18) | 873 a (37) | 686 A (5) | 682 A (18) |
Elongation (%) | 18.6 a (0.5) | 15.5 b (1.2) | 26.0 A (1.5) | 23.6 B (1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takaichi, A.; Kajima, Y.; Htat, H.L.; Wakabayashi, N. Influences of Different Selective Laser Melting Machines on the Microstructures and Mechanical Properties of Co–Cr–Mo Alloys. Appl. Sci. 2024, 14, 6576. https://doi.org/10.3390/app14156576
Takaichi A, Kajima Y, Htat HL, Wakabayashi N. Influences of Different Selective Laser Melting Machines on the Microstructures and Mechanical Properties of Co–Cr–Mo Alloys. Applied Sciences. 2024; 14(15):6576. https://doi.org/10.3390/app14156576
Chicago/Turabian StyleTakaichi, Atsushi, Yuka Kajima, Hein Linn Htat, and Noriyuki Wakabayashi. 2024. "Influences of Different Selective Laser Melting Machines on the Microstructures and Mechanical Properties of Co–Cr–Mo Alloys" Applied Sciences 14, no. 15: 6576. https://doi.org/10.3390/app14156576
APA StyleTakaichi, A., Kajima, Y., Htat, H. L., & Wakabayashi, N. (2024). Influences of Different Selective Laser Melting Machines on the Microstructures and Mechanical Properties of Co–Cr–Mo Alloys. Applied Sciences, 14(15), 6576. https://doi.org/10.3390/app14156576