Bioactives of the Freshwater Aquatic Plants, Nelumbo nucifera and Lemna minor, for Functional Foods, Cosmetics and Pharmaceutical Applications, with Antioxidant, Anti-Inflammatory and Antithrombotic Health Promoting Properties
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Nelumbo nucifera
3.1. Nelumbo nucifera: General Information
Part of the Plant | Bioactive Compound (Composition) | Reference | ||
---|---|---|---|---|
Phenolic acids (mg/100 g DW) | Stamen | p-Coumaric acid | 10.78 ± 0.38 | [20] |
Petal | Gallic acid | 277.84 ± 6.36 | ||
Seed embryo | Ferulic acid | 24.71 ± 2.03 | ||
p-Coumaric acid | 105.34 ± 2.93 | |||
Leaf stalk | Gallic acid | 163.09 ± 8.58 | ||
Old leaf | Gallic acid | 49.38 ± 4.83 | ||
Flavonoids | Flower Stalk | Myricetin | 8.89 ± 0.83 | [20] |
Luteolin | 4.89 ± 0.35 | |||
Quercetin | 59.91 ± 5.64 | |||
Naringenin | 2213.41 ± 11.35 | |||
Kaempferol | 6.40 ± 0.64 | |||
Isorhamnetin | 3.51 ± 0.28 | |||
Cyanidin | 12.02 ± 0.09 | |||
Delphinidin | 20.70 ± 0.24 | |||
Stamen | Myricetin | 7.63 ± 0.35 | [20] | |
Quercetin | 43.94 ± 2.08 | |||
Naringenin | 2185.84 ± 24.21 | |||
Kaempferol | 160.71 ± 13.66 | |||
Isorhamnetin | 192.09 ± 15.70 | |||
Cyanidin | 115.79 ± 10.21 | |||
Delphinidin | 211.63 ± 17.21 | |||
Petal | Myricetin | 8.55 ± 0.29 | [20] | |
Quercetin | 196.34 ± 19.03 | |||
Naringenin | 2226.69 ± 13.66 | |||
Kaempferol | 197.83 ± 19.81 | |||
Isorhamnetin | 237.85 ± 13.86 | |||
Cyanidin | 349.98 ± 24.28 | |||
Delphinidin | 1837.27 ± 52.67 | |||
Luteolin | 37.50 ± 1.87 | |||
Quercetin | 81.79 ± 3.57 | |||
Naringenin | 2241.51 ± 18.41 | |||
Kaempferol | 4.92 ± 0.41 | |||
Isorhamnetin | 11.56 ± 0.85 | |||
Cyanidin | 1901.52 ± 14.15 | |||
Delphinidin | 691.58 ± 9.84 | |||
Seed Embryo | Schaftoside | 474.1 mg/100 g DW | [21] | |
Vicenin-2 | 72.9 mg/100 g DW | |||
Luteolin 6-C-glucosyl-8-C-arabinoside | 46.0 mg/100 g DW | |||
Isoorientin | 49.5 mg/100 g DW | |||
Orientin | 67.3 mg/100 g DW | |||
Isochaftoside | 91.0 mg/100 g DW | |||
Apigenin 8-C-glucoside | 33.1 mg/100 g DW | |||
Apigenin 6-C-glucosyl-8-C-rhamnoside | 30.5 mg/100 g DW | |||
Flavonoid O-glycosides | - | |||
Luteolin 7-O-neohesperidoside | 83.7 mg/100 g DW | |||
Kaempferol 7-O-glucoside | 14.5 mg/100 g DW | |||
Isorhamnetin 3-O-rutinoside | 17.5 mg/100 g DW | |||
Diosmetin 7-O-rutinoside | 29.1 mg/100 g DW | |||
Leaf Stalk | Luteolin | 12.43 ± 0.77 | [20] | |
Quercetin | 35.95 ± 1.94 | |||
Naringenin | 1918.10 ± 37.81 | |||
Isorhamnetin | 6.80 ± 0.35 | |||
Cyanidin | 7.15 ± 0.74 | |||
Delphinidin | 6.15 ± 1.05 | |||
Old Leaf | Quercetin | 458.56 ± 33.45 | [20] | |
Naringenin | 1064.17 ± 75.38 | |||
Kaempferol | 3.87 ± 0.31 | |||
Isorhamnetin | 2.67 ± 0.09 | |||
Cyanidin | 184.82 ± 11.38 | |||
Delphinidin | 39.46 ± 2.42 | |||
Leaves | Quercetin 3-O-arabinopyranosyl-(1→2)-galactopyranoside | 104.9 mg/100 g DW | [20] | |
Hyperoside | 422.0 mg/100 g DW | |||
Isoquercitrin | 274.6 mg/100 g DW | |||
Quercetin 3-O-glucuronide | 393.4 mg/100 g DW | |||
Quercetin 3-O-rhamnopyranosyl-(1→2)-glucopyranoside | 13.1 mg/100 g DW | |||
Quercetin 3-O-arabinoside | 7.7 mg/100 g DW | |||
Astragalin | 150.8 mg/100 g DW | |||
Kaempferol 3-O-galactoside | 29.5 mg/100 g DW | |||
Kaempferol 3-O-glucuronide | 33.6 mg/100 g DW | |||
Myricetin 3-O-hexose | 26.7 mg/100 g DW | |||
Diosmetin 7-O-hexose | 16.2 mg/100 g DW | |||
Isorhamnetin 3-O-arabinopyranosyl-(1→2)-glucopyranoside | 10.0 mg/100 g DW | |||
Isorhamnetin 3-O-hexose | 9.8 mg/100 g DW | |||
Isorhamnetin 3-O-glucuronide | 8.9 mg/100 g DW | |||
Catechin | 22.3 μg/mg in water and 34.3 μg/mg in ethanol | |||
Quercetin | 3.72 μg/mg in water and 1.80 μg/mg in ethanol | |||
Alkaloids | Leaves | (−)-1(R)-N-methylcoclaurine | [22] | |
(−)-Lirinidine (5-demethylnuciferine) | ||||
(−)-Anonaine | ||||
(−)-Asimilobine | ||||
(−)-Caaverine | ||||
(−)-N-Methylasimilobine | ||||
(−)-nor-Nuciferine | ||||
(−)-Nuciferine | ||||
(−)-Roemerine | ||||
(6R,6aR)-Roemerine-Nβ-oxide | ||||
(R)-Roemerine | ||||
2-Hydroxy-1-methoxy-6a, 7-dehydroaporphine | ||||
7-Hydroxydehydronuciferine | ||||
Anonaine | ||||
Cepharadione B | ||||
cis-N-Coumaroyltyramine | ||||
cis-N-Feruloyltyramine | ||||
D, l-Armepavine | ||||
Dehydronuciferine | ||||
Dehydroroemerine | ||||
Isoliensinine | ||||
Liensinine | ||||
Liriodenine | ||||
Lotusine | ||||
Lysicamine | ||||
Neferine | ||||
N-methylasimilobine | ||||
N-Methylasimilobine | ||||
N-Nornuciferine | ||||
Nornuciferine | ||||
Nuciferine | ||||
Nuciferine N-oxide | ||||
Oleracein E | ||||
Pronuciferine | ||||
Roemerin | ||||
Trans-N-Coumaroyltyramine | ||||
Trans-N-Feruloyltyramine | ||||
Flower buds | (−)-Lirinidine (5-demethylnuciferine) | [22] | ||
2-Hydroxy-1-methoxy-6a, 7-dehydroaporphine | ||||
Asimilobine | ||||
D, l-Armepavine | ||||
Dehydronuciferine | ||||
Lysicamine | ||||
N-Methylasimilobine | ||||
N-Nornuciferine | ||||
Nuciferine | ||||
Nuciferine N-oxide | ||||
Stamen | (−)-Lirinidine (5-demethylnuciferine) | [22] | ||
Anonaine | ||||
Armepavine | ||||
Asimilobine | ||||
Dihydroergotamine | ||||
Dehydroemerine | ||||
Dehydronuciferine | ||||
Demethylcoclaurine | ||||
Isoliensinine | ||||
Liensinine | ||||
Liriodenine | ||||
N-Methylasimilobine | ||||
N-Methylcoclaurine | ||||
N-Methylisococlaurine | ||||
N-Norarmepavine | ||||
Nornuciferine | ||||
Reserpine | ||||
Roemerin | ||||
Seeds | 3-Indoleacetic acid | [22] | ||
Anisic acid | ||||
Coclaurine | ||||
Dauricine | ||||
Isoliensinine | ||||
Liensinine | ||||
Lotusine | ||||
Neferine | ||||
Nuciferine | ||||
Tryptophan | ||||
Plumule | 4′-Methyl-N-methylcoclaurine | [22] | ||
Armepavine | ||||
Higenamine | ||||
Higenamine 4′-O-β-D-glucoside | ||||
O-Nornuciferine | ||||
Roemerin | ||||
Flower | Norjuziphine | [22] | ||
Petals | Reserpine | [22] | ||
Fatty Acids | Seeds | 14 carbonates | [10] | |
Pentadecanoate | ||||
14-Methylpentadecanoic acid | ||||
Maleic-7-hexadecane acid | ||||
Maleic-9-octadecenoic acid | ||||
17 carbonates | ||||
18 carbonates | ||||
Anti-9-octadecenoic acid | ||||
Anti-8-octadecenoic | ||||
8,11-Octadecadienoic acid | ||||
9,12,15-Octadecatrienoic acid | ||||
20 carbonates | ||||
Behenic acid | ||||
23 carbonates | ||||
Bee pollen | Myristic acid (14:0) | [10] | ||
Pentadecanoic acid (15:0) | ||||
Palmitic acid (16:0) | ||||
Palmitoleic acid (16:1) | ||||
Margaric acid (17:0) | ||||
Stearic acid (18:0) | ||||
Oleic acid (18:1) | ||||
Linoleic acid (18:2) | ||||
α-Linolenic acid (18:3) | ||||
Behenic acid (22:0) | ||||
Saturated fatty acid (SFA) | ||||
Monounsaturated fatty acid (MUFA) | ||||
Polyunsaturated fatty acid (PUFA) |
3.2. Antioxidant Health Promoting Effect of Nelumbo nucifera Bioactives and Extracts
3.2.1. In Vitro Antioxidant Effects of Nelumbo nucifera’s Bioactives and Extracts
3.2.2. In Vivo Antioxidant Effects of Nelumbo nucifera’s Bioactives and Extracts
3.3. Anti-Inflammatory Health Promoting Effect of Nelumbo nucifera Bioactives and Extracts
3.3.1. In Vitro and Ex Vivo Ant-Inflammatory Activity of Nelumbo nucifera’s Bioactives and Extracts
3.3.2. In Vivo Anti-Inflammatory Health Benefits of Nelumbo nucifera’s Bioactives and Extracts
3.4. Antithrombotic Effects of Nelumbo nucifera’s Bioactives and Extracts
3.4.1. Anti-Coagulant Effects of Nelumbo nucifera’s Bioactives and Extracts
3.4.2. Anti-Platelet Effects of Nelumbo nucifera’s Bioactives and Extracts
3.5. Other Health Benefits of Nelumbo nucifera’s Bioactives-Extracts and Relative Functional Food Products
3.5.1. Anti-Obesity Health Benefits
3.5.2. Neuroprotective Health Benefits
3.5.3. Anti-Tumor, Chemotherapeutic and Cytotoxic Anti-Cancer Health Benefits
3.5.4. Hepatoprotective Health Benefits
3.5.5. Anti-Pyretic Effects
3.5.6. Anti-Diabetic Health Benefits
3.5.7. Anti-Aging Properties
3.5.8. Anti-Bacterial Activities
3.5.9. Health Effects against Hypocholesterolemia and Hyperlipidemia
3.5.10. Effects against Sleep Disorders
3.5.11. Anxiolytic, Antidepressant and Antiepileptic Effects
3.5.12. Other Health Benefits
Bio-Functional Ingredient | Model | Study Design | Outcomes | Conclusions | References |
---|---|---|---|---|---|
Potential Pharmaceutical Application | |||||
Lotus’s Root, Flower, Leaf, Seed and Stem Combined Extract |
|
|
|
| [47] |
Lotus Extract |
|
|
|
| [77] |
Lotus’s Stalks’ Extract |
|
|
|
| [73] |
Lotus’s Seeds’ Extract |
|
|
|
| [83] |
Lotus’s Leaves’ Extract |
|
|
|
| [72] |
Lotus’s Leaves’ Extract |
|
|
|
| [67] |
Lotus Fruit Extract |
|
|
|
| [82] |
Lotus’s Rhizomes’ Extract |
|
|
|
| [76] |
Lotus’s Leaves’ Extract |
|
|
|
| [65] |
Lotus’s Root’s Extract |
|
|
|
| [39] |
|
|
| |||
Lotus’s Seeds’ Extract |
|
|
|
| [57] |
Lotus’s Rhizomes’ Extract |
|
|
|
| [81] |
Lotus Extract |
|
|
|
| [64] |
Bio-Functional Food | Model | Study Design | Outcomes | Conclusions | References |
---|---|---|---|---|---|
Potential Nutraceutical Application | |||||
Lotus Stamen Tea |
|
|
|
| [80] |
White Lotus Petal Tea |
|
|
|
| [68] |
Lotus Seed Tea |
|
|
|
| [35] |
Bio-Functional Food | Study Design | Outcomes | Conclusions | References | |
Potential Nutraceutical Application | |||||
Tarts with Lotus Seed Powder |
|
|
| [75] | |
Biscuits with Lotus Seed flour |
|
|
| [88] | |
Lotus Root Flour (LRF) as a fat mimetic in biscuits |
|
|
| [36] | |
| |||||
Chicken Patties with Lotus Leaf Powder |
|
|
| [89] | |
Breadsticks with Lotus Rhizome Powder |
|
|
| [34] |
4. Lemna minor
4.1. Lemna minor: General Information
- 1.
- Lemna minor is one of the most common and well-known species of duckweed. It has a single, small, flat fringe and reproduces rapidly, forming dense colonies on the water surface [8].
- 2.
- Lemna gibba is characterised by its oval or swollen leaves. It is slightly larger than Lemna minor and often forms floating mats in the water [95].
- 3.
- Lemna trisulca is unique in appearance, with leaves that are elongated and divided, resembling tiny green ivy leaves. Unlike the previous species, Lemna trisulca does not float on the surface of the water but is partially submerged [96].
- 4.
- Lemna japonica is another species of duckweed commonly found in aquatic environments. It is similar in appearance to Lemna minor but may have some distinctive features [97].
- 5.
- Lemna perpusilla is a small species of duckweed with tiny leaves often found in calm, nutritious waters and is characterised by rapid vegetative reproduction [98].
Bioactive Compound | References | ||
---|---|---|---|
Fatty acids (%) of total) | (14:0) Myristic Acid | 0.55 ± 0.0 | [99] |
(16:0) Palmitic Acid | 21.74 ± 0.5 | [99] | |
(16:1) Palmitoleic Acid | 2.76 ± 0.0 | [99] | |
(18:0) Stearic Acid | 2.1 ± 0.4 | [99] | |
(18:1) Oleic Acid | 1.77 ± 0.1 | [99] | |
(18:2) Linoleic Acid | 15.89 ± 0.3 | [99] | |
[18:3 (GLA)] γ-Linolenic Acid | n.d. | [99] | |
[18:3 (ALA)] α-Linolenic Acid | 54.42 ± 0.7 | [99] | |
(18:4) Stearidonic Acid | n.d. | [99] | |
(20:0) Arachidic Acid | 0.33 ± 0.0 | [99] | |
(22:0) Behemic Acid | 0.44 ± 0.1 | [99] | |
Total FA/Dry Weight | 10.6 ± 0.8 | [99] | |
Total phenolic content | WELM | 22.0 ± 0.8 μg/mg extract | [8] |
EELM | 16.7 ± 0.0 μg/mg extract | [8] | |
MELM | 20.44 mg GAE/100 g | [100] | |
Other bioactives | β-carotene | 0.116 mg/100 mL | [100] |
Lycopene | 0.091 mg/100 mL | [100] | |
Saponin | 23.25 mg/g | [9] | |
Flavonoids | 0.83 mg/g | [9] | |
Alkaloids | 6.40 mg/g | [9] |
4.2. Health Promoting Effect of Lemna minor Bioactives, Extracts and Related Functional Products
4.2.1. Antioxidant Effects of Lemna minor’s Bioactives and Extracts
4.2.2. Anti-Inflammatory Effects of Lemna minor’s Bioactives and Extracts
4.2.3. Hematological Responses of Lemna minor’s Bioactives and Extracts and Associated Benefits
4.2.4. Anti-Microbial and Antibacterial Activity of Lemna minor’s Bioactives and Extracts
4.2.5. Safety Evaluation of Lemna minor’s Bioactives and Extracts
4.2.6. Lemna minor’s Bioactives and Extracts for Functional Foods’ Applications in Animals’ Feeds
4.2.7. Neuropharmacological Application of Lemna minor’s Bioactives and Extracts
Bio-Functional Ingredient | Model | Study Design | Outcomes | Conclusions | References |
---|---|---|---|---|---|
Potential Pharmaceutical Application | |||||
L. minor Extract |
|
|
|
| [137] |
L. minor Extract |
|
|
|
| [131] |
L. minor Extract |
|
|
|
| [101] |
L. minor Extract |
|
|
|
| [108] |
L. minor L. Powder |
|
|
|
| [121] |
Lemnan LM (An apiogalacturonanic pectin of duckweed) |
|
|
|
| [128] |
Raw matter L. minor |
|
|
|
| [110] |
L. minor Flavonoid Extract |
|
|
|
| [126] |
Sulfonated pectin of L. minor. |
|
|
|
| [127] |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lordan, R.; Zabetakis, I.; Tsoupras, A. Inflammation and Chronic Diseases: The Polar Lipid Link. In Proceedings of the 1st International Electronic Conference on Food Science and Functional Foods, Online, 10–25 November 2020; p. 70. [Google Scholar]
- Tsoupras, A.; Lordan, R.; Zabetakis, I. Inflammation, Not Cholesterol, Is a Cause of Chronic Disease. Nutrients 2018, 10, 604. [Google Scholar] [CrossRef] [PubMed]
- Tsoupras, A.; Moran, D.; Byrne, T.; Ryan, J.; Barrett, L.; Traas, C.; Zabetakis, I. Anti-Inflammatory and Anti-Platelet Properties of Lipid Bioactives from Apple Cider By-Products. Molecules 2021, 26, 2869. [Google Scholar] [CrossRef] [PubMed]
- Osama, M.; Wei, C.R.; Saleem, R.; Unar, A.A.; Unar, K.; Siyal, F.J.; Shaikh, B.; Baig, S.G.; Siddiq, A. Aquatic Plants With Anti-Inflammatory And Anti-Oxidant Activities. J. Surv. Fish. Sci. 2023, 10, 3802–3806. [Google Scholar] [CrossRef]
- Acosta, K.; Appenroth, K.J.; Borisjuk, L.; Edelman, M.; Heinig, U.; Jansen, M.A.K.; Oyama, T.; Pasaribu, B.; Schubert, I.; Sorrels, S.; et al. Return of the Lemnaceae: Duckweed as a Model Plant System in the Genomics and Postgenomics Era. Plant Cell 2021, 33, 3207–3234. [Google Scholar] [CrossRef] [PubMed]
- Punia Bangar, S.; Dunno, K.; Kumar, M.; Mostafa, H.; Maqsood, S. A Comprehensive Review on Lotus Seeds (Gaertn.): Nutritional Composition, Health-Related Bioactive Properties, and Industrial Applications. J. Funct. Foods 2022, 89, 104937. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Balasubramanian, R.; Saha, K.; Saha, B.P.; Pal, M. A Review on N. nucifera Gaertn. Anc. Sci. Life 1996, 15, 268. [Google Scholar] [PubMed]
- Gülçin, İ.; Kireçci, E.; Akkemik, E.; Topal, F.; Hisar, O. Antioxidant and Antimicrobial Activities of an Aquatic Plant: Duckweed (L. minor L.). Turk. J. Biol. 2010, 34, 175–188. [Google Scholar] [CrossRef]
- Xu, J.; Shen, Y.; Zheng, Y.; Smith, G.; Sun, X.S.; Wang, D.; Zhao, Y.; Zhang, W.; Li, Y. Duckweed (Lemnaceae) for Potentially Nutritious Human Food: A Review. Food Rev. Int. 2023, 39, 3620–3634. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Zeng, S.; Huang, X.; Guo, Z.; Zheng, Y.; Tian, Y.; Zheng, B. Nutritional Composition, Physiological Functions and Processing of Lotus (N. nucifera Gaertn.) Seeds: A Review. Phytochem. Rev. 2015, 14, 321–334. [Google Scholar] [CrossRef]
- Wu, J.-Z.; Zheng, Y.-B.; Chen, T.-Q.; Yi, J.; Qin, L.-P.; Rahman, K.; Lin, W.-X. Evaluation of the Quality of Lotus Seed of N. nucifera Gaertn from Outer Space Mutation. Food Chem. 2007, 105, 540–547. [Google Scholar] [CrossRef]
- Guo, D.-L.; Luo, Z.-R. Microsatellite Isolation and Characterization in Japanese Persimmon (Diospyros Kaki). Biochem. Genet. 2008, 46, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.B. Cultivation of Lotus (N. nucifera Gaertn. ssp. Nucifera) and Its Utilization in China. Genet. Resour. Crop Evol. 2009, 56, 323–330. [Google Scholar] [CrossRef]
- Chen, C.; Li, G.; Zhu, F. A Novel Starch from Lotus (N. nucifera) Seeds: Composition, Structure, Properties and Modifications. Food Hydrocoll. 2021, 120, 106899. [Google Scholar] [CrossRef]
- Ke, W.D.; Li, F.; Liu, Y.P.; Sun, B. Advance on Lotus Germplasm Resources and Current Breeding. J. Chang. Veg. 2003, 4, 5–9. [Google Scholar]
- Wigand, A.; Dennert, E. Nelumbium speciosum W. Available online: https://www.schweizerbart.de/publications/detail/artno/144001100 (accessed on 23 April 2024).
- Mehta, N.; Ekta, P.; Patani, P.; Patani, V.; Shah, B.N. nucifera (Lotus): A Review on Ethanobotany. Phytochem. Pharmacol. 2013, 1, 152–167. [Google Scholar] [CrossRef]
- Watson, L.; Dallwitz, M.J. The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval; University of New Orleans: New Orleans, LA, USA, 1992. [Google Scholar]
- Shen-Miller, J.; Mudgett, M.B.; Schopf, J.W.; Clarke, S.; Berger, R. Exceptional Seed Longevity and Robust Growth: Ancient Sacred Lotus from China. Am. J. Bot. 1995, 82, 1367–1380. [Google Scholar] [CrossRef]
- Temviriyanukul, P.; Sritalahareuthai, V.; Promyos, N.; Thangsiri, S.; Pruesapan, K.; Srinuanchai, W.; Nuchuchua, O.; Siriwan, D.; On-nom, N.; Suttisansanee, U. The Effect of Sacred Lotus (N. nucifera) and Its Mixtures on Phenolic Profiles, Antioxidant Activities, and Inhibitions of the Key Enzymes Relevant to Alzheimer’s Disease. Molecules 2020, 25, 3713. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liu, T.; Zhang, C.; Guo, M. Flavonoids of Lotus (N. nucifera) Seed Embryos and Their Antioxidant Potential. J. Food Sci. 2017, 82, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Bishayee, A.; Patel, P.A.; Sharma, P.; Thoutireddy, S.; Das, N. Lotus (N. nucifera Gaertn.) and Its Bioactive Phytocompounds: A Tribute to Cancer Prevention and Intervention. Cancers 2022, 14, 529. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; He, Y.; Yang, Y.; Gou, Y.; Li, S.; Wang, R.; Zeng, S.; Zhao, X. Antioxidant and Inflammatory Effects of N. nucifera Gaertn. Leaves. Oxidative Med. Cell. Longev. 2021, 2021, e8375961. [Google Scholar] [CrossRef]
- Jiang, Y.; Ng, T.B.; Wang, C.R.; Li, N.; Wen, T.Y.; Qiao, W.T.; Zhang, D.; Cheng, Z.H.; Liu, F. First Isolation of Tryptophan from Edible Lotus (N. nucifera Gaertn) Rhizomes and Demonstration of Its Antioxidant Effects. Int. J. Food Sci. Nutr. 2010, 61, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Thi Quynh, T.; Long, D.; Kim Hong, H. Phytocomponents and Antioxidant Activity in the Methanol Extract of Seed Lotus (N. nucifera Gaertn.) from Viet Nam. Res. J. Biotechnol. 2021, 16, 38–44. [Google Scholar] [CrossRef]
- Jung, H.A.; Kim, J.E.; Chung, H.Y.; Choi, J.S. Antioxidant Principles of N. nucifera Stamens. Arch. Pharm. Res. 2003, 26, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Sranujit, R.P.; Noysang, C.; Tippayawat, P.; Kooltheat, N.; Luetragoon, T.; Usuwanthim, K. Phytochemicals and Immunomodulatory Effect of N. nucifera Flower Extracts on Human Macrophages. Plants 2021, 10, 2007. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, I. Antioxidant Activity of L-Adrenaline: A Structure-Activity Insight. Chem. Biol. Interact. 2009, 179, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Ak, T.; Gülçin, I. Antioxidant and Radical Scavenging Properties of Curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on Products of Browning Reactions Antioxidative Activities of Product of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. Available online: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1125699 (accessed on 28 April 2024). [CrossRef]
- Gülçin, I.; Elias, R.; Gepdiremen, A.; Boyer, L. Antioxidant Activity of Lignans from Fringe Tree (Chionanthus virginicus L.). Eur. Food Res. Technol. 2006, 223, 759–767. [Google Scholar] [CrossRef]
- Köksal, E.; Gülçin, I.; Beyza, S.; Sarikaya, O.; Bursal, E. In Vitro Antioxidant Activity of Silymarin. J. Enzym. Inhib. Med. Chem. 2009, 24, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Güllçin, I.; Daştan, A. Synthesis of Dimeric Phenol Derivatives and Determination of in Vitro Antioxidant and Radical Scavenging Activities. J. Enzym. Inhib. Med. Chem. 2007, 22, 685–695. [Google Scholar] [CrossRef]
- Thanushree, M.P.; Sudha, M.L.; Crassina, K. Lotus (N. nucifera) Rhizome Powder as a Novel Ingredient in Bread Sticks: Rheological Characteristics and Nutrient Composition. Food Meas. 2017, 11, 1795–1803. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Moon, G.-S. Photoprotective Effect of Lotus (N. nucifera Gaertn.) Seed Tea against UVB Irradiation. Prev. Nutr. Food Sci. 2015, 20, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.M.G.; Tayyaba, S.; Ali, S.A.; Tayyab, S.; Sayeed, S.A.; Ali, R.; Mobin, L.; Naz, S. Evaluation of the Potential of Lotus Root (N. nucifera) Flour as a Fat Mimetic in Biscuits with Improved Functional and Nutritional Properties. CyTA—J. Food 2020, 18, 624–634. [Google Scholar] [CrossRef]
- Kim, M.-J.; Shin, H.-S. Antioxidative Effect of Lotus Seed and Seedpod Extracts. Food Sci. Biotechnol. 2012, 21, 1761–1766. [Google Scholar] [CrossRef]
- Rai, S.; Wahile, A.; Mukherjee, K.; Saha, B.P.; Mukherjee, P.K. Antioxidant Activity of N. nucifera (Sacred Lotus) Seeds. J. Ethnopharmacol. 2006, 104, 322–327. [Google Scholar] [CrossRef]
- You, J.S.; Lee, Y.J.; Kim, K.S.; Kim, S.H.; Chang, K.J. Ethanol Extract of Lotus (N. nucifera) Root Exhibits an Anti-Adipogenic Effect in Human Pre-Adipocytes and Anti-Obesity and Anti-Oxidant Effects in Rats Fed a High-Fat Diet. Nutr. Res. 2014, 34, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.-J.; Choe, J.; Hwang, K.-E.; Kim, C.-J.; Jo, C. Antioxidant Effects of Lotus (N. nucifera) Root and Leaf Extracts and Their Application on Pork Patties as Inhibitors of Lipid Oxidation, Alone and in Combination. Int. J. Food Prop. 2019, 22, 383–394. [Google Scholar] [CrossRef]
- Wang, L.; Yen, J.-H.; Liang, H.-L.; Wu, M.-J. Antioxidant Effect of Methanol Extracts from Lotus Plumule and Blossom (N. nucifera Gertn.). J. Food Drug Anal. 2020, 11, 3. [Google Scholar] [CrossRef]
- Choe, J.-H.; Jang, A.; Choi, J.-H.; Choi, Y.-S.; Han, D.-J.; Kim, H.-Y.; Lee, M.-A.; Kim, H.-W.; Kim, C.-J. Antioxidant Activities of Lotus Leaves (N. nucifera) and Barley Leaves (Hordeum vulgare) Extracts. Food Sci. Biotechnol. 2010, 19, 831–836. [Google Scholar] [CrossRef]
- Mai, P.; Hanh, N.; Nguyen, V.; Kim Hong, H. Comparative Study on Antioxidant Capacity and Biochemical Composition in Local Lotus Species N. nucifera Gaertn in Central Vietnam. In Proceedings of the 9th International Conference on the Development of Biomedical Engineering in Vietnam, Ho Chi Minh, Vietnam, 27–29 December 2022; pp. 1043–1054, ISBN 978-3-031-44629-0. [Google Scholar]
- Sohn, D.-H.; Kim, Y.-C.; Oh, S.-H.; Park, E.-J.; Li, X.; Lee, B.-H. Hepatoprotective and Free Radical Scavenging Effects of Nelumbo nucifera. Phytomedicine 2003, 10, 165–169. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Hano, C. Flavonoids from Sacred Lotus Stamen Extract Slows Chronological Aging in Yeast Model by Reducing Oxidative Stress and Maintaining Cellular Metabolism. Cells 2022, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhao, R.; Yang, X.; Sun, L.; Bao, Y.; Shuai Liu, Y.; Blennow, A.; Liu, X. Recent Advances on Bioactive Compounds, Biosynthesis Mechanism, and Physiological Functions of N. nucifera. Food Chem. 2023, 412, 135581. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, H.J.; Cho, S.K.; Kang, W.Y.; Baek, H.; Jeon, H.Y.; Kim, B.; Kim, D.N. Nucifera Extracts as Whitening and Anti-Wrinkle Cosmetic Agent. Korean J. Chem. Eng. 2011, 28, 424–427. [Google Scholar] [CrossRef]
- Inhibitory Effect of N. nucifera Leaf Extract on 2-Acetylaminofluorene-Induced Hepatocarcinogenesis through Enhancing Antioxidative Potential and Alleviating Inflammation in Rats—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770729/ (accessed on 22 April 2024).
- Kim, S.M.; Park, E.-J.; Kim, J.-Y.; Choi, J.; Lee, H.-J. Anti-Inflammatory Effects of Fermented Lotus Root and Linoleic Acid in Lipopolysaccharide-Induced RAW 264.7 Cells. Life 2020, 10, 293. [Google Scholar] [PubMed]
- Li, F.; Sun, X.-Y.; Li, X.-W.; Yang, T.; Qi, L.-W. Enrichment and Separation of Quercetin-3-O-β-D-Glucuronide from Lotus Leaves (N. nucifera Gaertn.) and Evaluation of Its Anti-Inflammatory Effect. J. Chromatogr. B 2017, 1040, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Sahu, B.; Sahu, M.; Sahu, M.; Yadav, M.; Sahu, R.; Sahu, C. An Updated Review on N. nucifera Gaertn: Chemical Composition, Nutritional Value and Pharmacological Activities. Chem. Biodivers. 2024, 21, e202301493. [Google Scholar] [CrossRef]
- Park, E.; Kim, G.D.; Go, M.-S.; Kwon, D.; Jung, I.-K.; Auh, J.H.; Kim, J.-H. Anti-Inflammatory Effects of Nelumbo Leaf Extracts and Identification of Their Metabolites. Nutr. Res. Pract. 2017, 11, 265–274. [Google Scholar] [CrossRef]
- Tseng, H.-C.; Tsai, P.-M.; Chou, Y.-H.; Lee, Y.-C.; Lin, H.-H.; Chen, J.-H. In Vitro and In Vivo Protective Effects of Flavonoid-Enriched Lotus Seedpod Extract on Lipopolysaccharide-Induced Hepatic Inflammation. Am. J. Chin. Med. 2019, 47, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-C.; Lin, W.-L.; Lee, Y.-J.; Tang, Y.-C.; Wang, C.-J. Polyphenol-Rich Extract of N. nucifera Leaves Inhibits Alcohol-Induced Steatohepatitis via Reducing Hepatic Lipid Accumulation and Anti-Inflammation in C57BL/6J Mice. Food Funct. J. 2014, 5, 678–687. [Google Scholar] [CrossRef]
- Full Article: N. nucifera Gaertn. Leaves: Network Pharmacology and Molecular Docking Analysis of Active Ingredients and Their Mechanisms of Action in Treating Atherosclerosis. Available online: https://www.tandfonline.com/doi/full/10.1080/13102818.2022.2116996 (accessed on 22 April 2024).
- Liao, C.-H.; Lin, J.-Y. Lotus (N. nucifera Gaertn) Plumule Polysaccharide Protects the Spleen and Liver from Spontaneous Inflammation in Non-Obese Diabetic Mice by Modulating pro-/Anti-Inflammatory Cytokine Gene Expression. Food Chem. 2011, 129, 245–252. [Google Scholar] [CrossRef]
- Liu, C.-P.; Tsai, W.-J.; Lin, Y.-L.; Liao, J.-F.; Chen, C.-F.; Kuo, Y.-C. The Extracts from N. nucifera Suppress Cell Cycle Progression, Cytokine Genes Expression, and Cell Proliferation in Human Peripheral Blood Mononuclear Cells. Life Sci. 2004, 75, 699–716. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Saha, K.; Das, J.; Pal, M.; Saha, B.P. Studies on the Anti-Inflammatory Activity of Rhizomes of N. nucifera. Planta Medica 1997, 63, 367–369. [Google Scholar] [CrossRef]
- Periyasamy, V.; Gopakumar, N. Anti-Inflammatory Activity of Red and White Lotus Seeds N. nucifera in Albino Rats. Vet. World 2010, 6, 157. [Google Scholar] [CrossRef]
- Rajput, M.A.; Zehra, T.; Ali, F.; Kumar, G. Evaluation of Antiinflammatory Activity of Ethanol Extract of N. nucifera Fruit. Turk. J. Pharm. Sci. 2021, 18, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Rajput, M.; Khan, R.; Zafar, S.; Riaz, A.; Najam, R. Assessment of Anti-Coagulant Activity of N. nucifera Fruit. Pak. J. Pharm. Sci. 2019, 32, 2561–2564. [Google Scholar] [PubMed]
- Zhou, Y.-J.; Xiang, J.-Z.; Yuan, H.; Liu, H.; Tang, Q.; Hao, H.-Z.; Yin, Z.; Wang, J.; Ming, Z.-Y. Neferine Exerts Its Antithrombotic Effect by Inhibiting Platelet Aggregation and Promoting Dissociation of Platelet Aggregates. Thromb. Res. 2013, 132, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Durairaj, B.; Dorai, A. Antiplatelet Activity of White and Pink N. nucifera Gaertn Flowers. Braz. J. Pharm. Sci. 2010, 46, 579–583. [Google Scholar] [CrossRef]
- Sharma, C.; Chauhan, S.; Gupta, S.; Devi, A.; Nair, A. Role of Whole Plant Extract of N. nucifera Gaertn in the Treatment of Thrombolysis. Cardiovasc. Hematol. Agents Med. Chem. 2019, 17, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Hattori, E.; Fukaya, Y.; Imai, S.; Ohizumi, Y. Anti-Obesity Effect of N. nucifera Leaves Extract in Mice and Rats. J. Ethnopharmacol. 2006, 106, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.; Rajput, M.A.; Assad, T. Effect of N. nucifera Fruit on Scopolamine Induced Memory Deficits and Motor Coordination. Metab. Brain Dis. 2019, 34, 87–92. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lin, C.-M.; Chang, Y.-C.; Yang, M.-Y.; Wang, C.-J.; Hsu, L.-S. N. nucifera Leaves Extract Ameliorated Scopolamine-Induced Cognition Impairment via Enhanced Adult Hippocampus Neurogenesis. Environ. Toxicol. 2024, 39, 3198–3210. [Google Scholar] [CrossRef] [PubMed]
- Intui, K.; Nuchniyom, P.; Laoung-on, J.; Jaikang, C.; Quiggins, R.; Sudwan, P. Neuroprotective Effect of White N. nucifera Gaertn. Petal Tea in Rats Poisoned with Mancozeb. Foods 2023, 12, 2175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Feng, X.; Wang, C.; Peng, D.; Zhu, K.; Song, J.-L. Anticancer Activity of N. nucifera Stamen Extract in Human Colon Cancer HCT-116 Cells in Vitro. Oncol. Lett. 2017, 13, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-Y.; Chang, Y.-C.; Chan, K.-C.; Lee, Y.-J.; Wang, C.-J. Flavonoid-Enriched Extracts from N. nucifera Leaves Inhibits Proliferation of Breast Cancer in Vitro and in Vivo. Eur. J. Integr. Med. 2011, 3, e153–e163. [Google Scholar] [CrossRef]
- Kim, N.-Y.; Yang, I.-J.; Kim, S.; Lee, C. Lotus (Nelumbo nucifera) Seedpod Extract Inhibits Cell Proliferation and Induces Apoptosis in Non-Small Cell Lung Cancer Cells via Downregulation of Axl. J. Food Biochem. 2021, 45, e13601. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-C.; Kao, S.-H.; Chung, P.-J.; Chan, K.-C.; Yang, M.-Y.; Wang, C.-J. Improvement for High Fat Diet-Induced Hepatic Injuries and Oxidative Stress by Flavonoid-Enriched Extract from N. nucifera Leaf. J. Agric. Food Chem. 2009, 57, 5925–5932. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Mukherjee, P.K.; Mukherjee, K.; Pal, M.; Mandal, S.C.; Saha, B.P. Evaluation of Antipyretic Potential of N. nucifera Stalk Extract. Phytother. Res. 2000, 14, 272–274. [Google Scholar] [CrossRef] [PubMed]
- Huralikuppi, J.C.; Christopher, A.B.; Stephen, P.M. Anti-Diabetic Effect of N. nucifera (Gaertn): Part I Preliminary Studies in Rabbits. Phytother. Res. 1991, 5, 54–58. [Google Scholar] [CrossRef]
- Kumari, J.; R, A. Quality Attributes of Value Added Tarts Developed from Lotus (N. nucifera) Seed Powder. Int. J. Curr. Res. Rev. 2021, 13, 22–25. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Saha, K.; Pal, M.; Saha, B.P. Effect of N. nucifera Rhizome Extract on Blood Sugar Level in Rats. J. Ethnopharmacol. 1997, 58, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.; Akhtar, N. Combined Topical Application of Lotus and Green Tea Improves Facial Skin Surface Parameters. Rejuvenation Res. 2013, 16, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Tho, N.T.; Tho, N.; An, T.N.; An, M.; Tri, M.; Venkata, T.; Tvm, S.; Lee, J.-S.; Nagajyothi, P. Green Synthesis of Silver Nanoparticles Using N. nucifera Seed Extract and Its Antibacterial Activity. Acta Chim. Slov. 2013, 60, 673–678. [Google Scholar] [PubMed]
- BACE1 and Cholinesterase Inhibitory Activities of N. nucifera Embryos | Archives of Pharmacal Research. Available online: https://link.springer.com/article/10.1007/s12272-014-0492-4 (accessed on 22 April 2024).
- Napradit, A.; Rintha, J.; Nararatwanchai, T.; Sittiprapaporn, P. The Effectiveness of Lotus Stamen Tea on Lowering Blood Lipid Level in Hyperlipidemic Subjects. In Proceedings of the 2018 International Conference on Digital Arts, Media and Technology (ICDAMT), Phayao, Thailand, 25–28 February 2018; pp. 305–308. [Google Scholar]
- Ahn, Y.; Kim, S.; Park, C.; Kim, J.E.; Suh, H.J.; Jo, K. Sleep-Promoting Activity of Lotus (N. nucifera) Rhizome Water Extract via GABAA Receptors. Pharm. Biol. 2022, 60, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Rajput, M.A.; Khan, R.A.; Assad, T. Anti-Epileptic Activity of N. nucifera Fruit. Metab. Brain Dis. 2017, 32, 1883–1887. [Google Scholar] [CrossRef] [PubMed]
- Rajput, M.A.; Khan, R.A. Phytochemical Screening, Acute Toxicity, Anxiolytic and Antidepressant Activities of the N. nucifera Fruit. Metab. Brain Dis. 2017, 32, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Dimond, C.; Dovan, K.; Shah, S.A.; Tran, B.; Pham, K.; Hsu, K.; Nguyen, N.N.; O’Dell, K.M. Effect of N. nucifera Extract on Anxiety Symptoms in Individuals With Moderate to Severe Anxiety: An Exploratory Study. J. Contemp. Pharm. Pract. 2023, 70, 15–20. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Y.; Feng, J.; Ling, M.; Wang, X. Unveiling the Potential of N. nucifera-Derived Liensinine to Target The Myostatin Protein and to Counteract Muscle Atrophy. J. Agric. Food Chem. 2024, 72, 2240–2249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hu, P.; Yao, J.; Xu, D.; Xu, Y.; Tan, Q. Optimal Dietary Alcoholic Extract of Lotus Leaf Improved Growth Performance and Health Status of Grass Carp (Ctenopharyngodon idellus). Fish Shellfish Immunol. 2019, 93, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, A.; Srivastava, A.K.; Katiyar, P.; Parvin, K. Efficacy of lotus stem cookies supplementation on the nutritional status of school-going children (6–12 years) suffering from anaemia and malnutrition. Rom. J. Diabetes Nutr. Metab. Dis. 2023, 30, 1127–1139. [Google Scholar]
- Dinkar, D.K.; Mishra, S. Preparation of Biscuits by Using Lotus Seed, Pearl Millets and Multigrain Wheat for Elderly People. Int. J. Res.Eng. Sci. Manag. 2020, 3, 413–415. Available online: https://journal.ijresm.com/index.php/ijresm/article/view/110 (accessed on 22 April 2024).
- Choi, Y.-S.; Choi, J.-H.; Kim, H.-Y.; Kim, H.-W.; Lee, M.-A.; Chung, H.-J.; Lee, S.-K.; Kim, C.-J. Effect of Lotus (N. nucifera) Leaf Powder on the Quality Characteristics of Chicken Patties in Refrigerated Storage. Food Sci. Anim. Resour. 2011, 31, 9–18. [Google Scholar] [CrossRef]
- Leng, R.A.; Stambolie, J.H.; Bell, R. Duckweed—A Potential High-Protein Feed Resource for Domestic Animals and Fish. Livest. Res. Rural. Dev. 1995, 7, 36. [Google Scholar]
- Chakrabarti, R.; Clark, W.D.; Sharma, J.G.; Goswami, R.K.; Shrivastav, A.K.; Tocher, D.R. Mass Production of L. minor and Its Amino Acid and Fatty Acid Profiles. Front. Chem. 2018, 6, 479. [Google Scholar] [CrossRef] [PubMed]
- Sońta, M.; Rekiel, A.; Batorska, M. Use of Duckweed (Lemna L.) in Sustainable Livestock Production and Aquaculture—A Review. Ann. Anim. Sci. 2019, 19, 257–271. [Google Scholar] [CrossRef]
- Priya, A.; Avishek, K.; Pathak, G. Assessing the Potentials of L. minor in the Treatment of Domestic Wastewater at Pilot Scale. Environ. Monit. Assess. 2012, 184, 4301–4307. [Google Scholar] [CrossRef] [PubMed]
- Escobar, C.M.; Escobar, A.C. Duckweed: A Tiny Aquatic Plant with Enormous Potential for Bioregenerative Life Support Systems. In Proceedings of the 47th International Conference on Environmental Systems, Charleston, SC, USA, 16–20 July 2017. [Google Scholar]
- De Lange, L.; Pieterse, A.H. A comparative study of the morphology of Lemna gibba L. and L. minor L. Acta Bot. Neerl. 1973, 22, 510–517. [Google Scholar] [CrossRef]
- McIlraith, A.L.; Robinson, G.G.C.; Shay, J.M. A Field Study of Competition and Interaction between L. minor and Lemna trisulca. Can. J. Bot. 1989, 67, 2904–2911. [Google Scholar] [CrossRef]
- Braglia, L.; Breviario, D.; Gianì, S.; Gavazzi, F.; De Gregori, J.; Morello, L. New Insights into Interspecific Hybridization in Lemna L. Sect. Lemna (Lemnaceae Martinov). Plants 2021, 10, 2767. [Google Scholar] [CrossRef]
- Chiu, M.M.; Falk, R.H. Ultrastructural Study on Lemna perpusilla. CYTOLOGIA 1975, 40, 313–322. [Google Scholar] [CrossRef]
- Yan, Y.; Candreva, J.; Shi, H.; Ernst, E.; Martienssen, R.; Schwender, J.; Shanklin, J. Survey of the Total Fatty Acid and Triacylglycerol Composition and Content of 30 Duckweed Species and Cloning of a Δ6-Desaturase Responsible for the Production of γ-Linolenic and Stearidonic Acids in Lemna gibba. BMC Plant Biol. 2013, 13, 201. [Google Scholar] [CrossRef] [PubMed]
- Doğan, S.Y.; Atasagun, S.; Ergönül, M.B. Determination of Chemical Content of L. minor L. by GC-MS and Investigation of Antioxidant Activity. Commun. Fac. Sci. Univ. Ank. Ser. C-Biol. 2022, 31, 53–64. [Google Scholar] [CrossRef]
- Karamalakova, Y.; Koleva, I.; Georgiev, T.; Akram, M.; Nikolova, G. Protective activity of L. minor L. in chronic bleomycin–induced lung inflammation. Proc. CBU Med. Pharm. 2021, 2, 60–65. [Google Scholar] [CrossRef]
- Khazri, O.; Charradi, K.; Limam, F.; El May, M.V.; Aouani, E. Grape Seed and Skin Extract Protects against Bleomycin-Induced Oxidative Stress in Rat Lung. Biomed. Pharmacother. 2016, 81, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, K.C.; Soares, F.S.; Rocha, L.G.C.; Silveira, P.C.L.; Silva, L.A.; Valença, S.S.; Pizzol, F.D.; Streck, E.L.; Pinho, R.A. Attenuation of Bleomycin-Induced Lung Injury and Oxidative Stress by N-Acetylcysteine plus Deferoxamine. Pulm. Pharmacol. Ther. 2008, 21, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.P.; Gonçalves, C.A.; de Brito, J.C.M.; Souza, A.M.; da Silva Cruz, F.V.; Bicalho, E.M.; Figueredo, C.C.; Garcia, Q.S. Ciprofloxacin Induces Oxidative Stress in Duckweed (L. minor L.): Implications for Energy Metabolism and Antibiotic-Uptake Ability. J. Hazard. Mater. 2017, 328, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Al-Snafi, A.E. L. Minor: Traditional Uses, Chemical Constituents and Pharmacological Effects—A Review. IOSR J. Pharm. 2019, 9, 6–11. [Google Scholar]
- Mane, V.S.; Gupta, A.; Pendharkar, N.; Shinde, B. Exploration of Primary Metabolites from L. minor and Determined Its Immunomodulatory and Antimicrobial Activity. 2017. Available online: http://www.ejpmr.com/ (accessed on 24 April 2024).
- Liver Damage in Bleomycin-Induced Pulmonary Fibrosis in Mice | Naunyn-Schmiedeberg’s Archives of Pharmacology. Available online: https://link.springer.com/article/10.1007/s00210-019-01690-7 (accessed on 24 April 2024).
- Karamalakova, Y.; Stefanov, I.; Georgieva, E.; Nikolova, G. Pulmonary Protein Oxidation and Oxidative Stress Modulation by L. minor L. in Progressive Bleomycin-Induced Idiopathic Pulmonary Fibrosis. Antioxidants 2022, 11, 523. [Google Scholar] [CrossRef] [PubMed]
- Krzysztof, D.; Riedel, J.; Gozdowski, D.; Niemiec, J.; Siennicka, A.; Róg, D. Productive Performance and Egg Quality of Laying Hens Fed Diets Supplemented with Garlic and Onion Extracts. J. Appl. Poult. Res. 2017, 26, 337–349. [Google Scholar] [CrossRef]
- Tanuwiria, U.H.; Mushawwir, A. Hematological and Antioxidants Responses of Dairy Cow Fed with a Combination of Feed and Duckweed (L. minor) as a Mixture for Improving Milk Biosynthesis: The Effects of Feed Duckweed. Biodiversitas J. Biol. Divers. 2020, 21, 45363. [Google Scholar] [CrossRef]
- (PDF) Total Phenolic Content, Flavonoid Concentration and Antioxidant Activity of Marrubium peregrinum L. Extracts. Available online: https://www.researchgate.net/publication/230766461_Total_phenolic_content_flavonoid_concentration_and_antioxidant_activity_of_Marrubium_peregrinum_L_Extracts (accessed on 28 April 2024).
- Iqbal, S.; Khatoon, Z.; Bano, S.; Abbasi, K.; Siddiqui, K.; Sultana, N. Evaluation of phytochemical and antimicrobial potential of L. minor fractions against pathogenic organism isolated from water sample. World J. Pharm. Res. 2023, 12, 1461–1473. [Google Scholar]
- (PDF) Total Phenolic Contents and Antioxidant Activity of Corn Tassel Extracts. Available online: https://www.researchgate.net/publication/248510930_Total_phenolic_contents_and_antioxidant_activity_of_corn_tassel_extracts (accessed on 28 April 2024).
- Amarowicz, R.; Pegg, R.B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J.A. Free-Radical Scavenging Capacity and Antioxidant Activity of Selected Plant Species from the Canadian Prairies. Food Chem. 2004, 84, 551–562. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D. Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Saritha, K.; Saraswathi, U. Antioxidant Activity of Gold Nanoparticles Synthesized Using L. minor. World J. Pharm. Sci. 2014, 2, 1545–1551. [Google Scholar]
- Cher, D.J.; Mosmann, T.R. Two Types of Murine Helper T Cell Clone. II. Delayed-Type Hypersensitivity Is Mediated by TH1 Clones. J. Immunol. 1987, 138, 3688–3694. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.B.; Li, X.Y. Antitumor Activity and Immuno-Potentiating Actions of Achyranthes Bidentata Polysaccharides. Zhongguo Yao Li Xue Bao 1993, 14, 556–561. [Google Scholar] [PubMed]
- Lim, B.O.; Yamada, K.; Nonaka, M.; Kuramoto, Y.; Hung, P.; Sugano, M. Dietary Fibers Modulate Indices of Intestinal Immune Function in Rats. J. Nutr. 1997, 127, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Popov, S.V.; Ovodova, R.G.; Ovodov, Y.S. Effect of Lemnan, Pectin from L. minor L., and Its Fragments on Inflammatory Reaction. Phytother. Res. 2006, 20, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Kalmakhelidze, S.L.; Gogebashvili, M.E.; Ivanishvili, N.I.; Sanikidze, T.V.; Museridze, D.P.; Ormotsadze, G.L. Phyto Therapeutic Treatment of Radiation-Induced Typical Morphological Changes of Small Intestine. Radiobiol. Radiat. Saf. 2021, 1, 87–92. [Google Scholar] [CrossRef]
- Cheng, L.; Kindel, P.K. Detection and Homogeneity of Cell Wall Pectic Polysaccharides of L. minor. Carbohydr. Res. 1997, 301, 205–212. [Google Scholar] [CrossRef]
- Ovodova, R.G.; Golovchenko, V.V.; Shashkov, A.S.; Popov, S.V.; Ovodov, I.S. Structure and physiological activity of lemnan, L. minor L. pectin. Bioorg. Khim. 2000, 26, 743–751. [Google Scholar] [PubMed]
- Johnson, L.B.; Riaz, A.A.; Adawi, D.; Wittgren, L.; Bäck, S.; Thornberg, C.; Osman, N.; Gadaleanu, V.; Thorlacius, H.; Jeppsson, B. Radiation Enteropathy and Leucocyte-Endothelial Cell Reactions in a Refined Small Bowel Model. BMC Surg. 2004, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.C.; Miraldi, E.; Ceccarini, M.R.; Naureen, Z.; Baini, G.; Manara, E.; Anpilogov, K.; Camilleri, G.; Dhuli, K.; Paolacci, S.; et al. Study of the Effects of L. minor Extracts on Human Immune Cell Populations. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 43–48. [Google Scholar]
- Sharma, S.S.; Gupta, A.; Mane, V.S.; Shinde, B. Immunopharmacological Activity Of Flavonoids From L. minor (Duckweed) And Determined Its Immunological Activity. Curr. Life Sci. 2017, 3, 22–27. [Google Scholar] [CrossRef]
- Vityazev, F.V.; Golovchenko, V.V.; Patova, O.A.; Drozd, N.N.; Makarov, V.A.; Shashkov, A.S.; Ovodov, Y.S. Synthesis of Sulfated Pectins and Their Anticoagulant Activity. Biochem. Mosc. 2010, 75, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Popov, S.V.; Golovchenko, V.V.; Ovodova, R.G.; Smirnov, V.V.; Khramova, D.S.; Popova, G.Y.; Ovodov, Y.S. Characterisation of the Oral Adjuvant Effect of Lemnan, a Pectic Polysaccharide of L. minor L. Vaccine 2006, 24, 5413–5419. [Google Scholar] [CrossRef] [PubMed]
- Effiong, B.N.; Sanni, A. Effect of Duckweed Meal on The Rate of Mold Infestation In Stored Pelleted Fish Feed. J. Am. Sci. 2009, 1545, 29–34. [Google Scholar]
- Al-Snafi, A.; Majid, W.; Talab, T. Medicinal Plants with Antidiabetic Effects—An Overview (Part 1). IOSR J. Pharm. 2019, 9, 9–46. [Google Scholar]
- González-Renteria, M.; del Carmen Monroy-Dosta, M.; Guzmán-García, X.; Hernández-Calderas, I.; Ramos-Lopez, M.A. Antibacterial Activity of L. minor Extracts against Pseudomonas fluorescens and Safety Evaluation in a Zebrafish Model. Saudi J. Biol. Sci. 2020, 27, 3465–3473. [Google Scholar] [CrossRef] [PubMed]
- Prasad, B.S.N.; Padmesh, T.V.N. Common Duckweed (L. minor) Assisted Green Synthesis of Silver Nanoparticles as Potent Anti-Fungal Nanomaterial. Res. J. Pharm. Technol. 2014, 7, 955–958. [Google Scholar]
- Burggren, W.W.; Dubansky, B.; Bautista, N.M. 2—Cardiovascular Development in Embryonic and Larval Fishes. In Fish Physiology; Gamperl, A.K., Gillis, T.E., Farrell, A.P., Brauner, C.J., Eds.; The Cardiovascular System; Academic Press: Cambridge, MA, USA, 2017; Volume 36, pp. 107–184. [Google Scholar]
- Effects of Diets with Fermented Duckweed (Lemna sp.) on Growth Performance and Gene Expression in the Pacific White Shrimp, Litopenaeus vannamei|Aquaculture International. Available online: https://link.springer.com/article/10.1007/s10499-014-9835-x (accessed on 22 April 2024).
- Fiordelmondo, E.; Ceschin, S.; Magi, G.E.; Mariotti, F.; Iaffaldano, N.; Galosi, L.; Roncarati, A. Effects of Partial Substitution of Conventional Protein Sources with Duckweed (L. minor) Meal in the Feeding of Rainbow Trout (Oncorhynchus Mykiss) on Growth Performances and the Quality Product. Plants 2022, 11, 1220. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Siddiki, M.A.K.; Mazumder, D.; Abeda, T.; Islam, M.S. In Vivo Neuropharmacological and Anti-Nutrient Study of Methanolic Extract of L. minor. J. Drugs Addict. Ther. 2021, 2, 2–6. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seferli, M.; Kotanidou, C.; Lefkaki, M.; Adamantidi, T.; Panoutsopoulou, E.; Finos, M.A.; Krey, G.; Kamidis, N.; Stamatis, N.; Anastasiadou, C.; et al. Bioactives of the Freshwater Aquatic Plants, Nelumbo nucifera and Lemna minor, for Functional Foods, Cosmetics and Pharmaceutical Applications, with Antioxidant, Anti-Inflammatory and Antithrombotic Health Promoting Properties. Appl. Sci. 2024, 14, 6634. https://doi.org/10.3390/app14156634
Seferli M, Kotanidou C, Lefkaki M, Adamantidi T, Panoutsopoulou E, Finos MA, Krey G, Kamidis N, Stamatis N, Anastasiadou C, et al. Bioactives of the Freshwater Aquatic Plants, Nelumbo nucifera and Lemna minor, for Functional Foods, Cosmetics and Pharmaceutical Applications, with Antioxidant, Anti-Inflammatory and Antithrombotic Health Promoting Properties. Applied Sciences. 2024; 14(15):6634. https://doi.org/10.3390/app14156634
Chicago/Turabian StyleSeferli, Marina, Christina Kotanidou, Melina Lefkaki, Theodora Adamantidi, Ellie Panoutsopoulou, Marios Argyrios Finos, Grigorios Krey, Nikolaos Kamidis, Nikolaos Stamatis, Chryssa Anastasiadou, and et al. 2024. "Bioactives of the Freshwater Aquatic Plants, Nelumbo nucifera and Lemna minor, for Functional Foods, Cosmetics and Pharmaceutical Applications, with Antioxidant, Anti-Inflammatory and Antithrombotic Health Promoting Properties" Applied Sciences 14, no. 15: 6634. https://doi.org/10.3390/app14156634
APA StyleSeferli, M., Kotanidou, C., Lefkaki, M., Adamantidi, T., Panoutsopoulou, E., Finos, M. A., Krey, G., Kamidis, N., Stamatis, N., Anastasiadou, C., & Tsoupras, A. (2024). Bioactives of the Freshwater Aquatic Plants, Nelumbo nucifera and Lemna minor, for Functional Foods, Cosmetics and Pharmaceutical Applications, with Antioxidant, Anti-Inflammatory and Antithrombotic Health Promoting Properties. Applied Sciences, 14(15), 6634. https://doi.org/10.3390/app14156634