Transcranial Direct Current Stimulation as Adjuvant to Gamified Rehabilitation for Upper Limb Function in Paediatric Brain Damage (CHILDBOOST Project): A Study Protocol for a Triple-Blind Randomised Controlled Trial
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.2.1. Sample Size
2.2.2. Randomisation
2.3. Intervention
2.3.1. Transcranial Direct Current Stimulation
2.3.2. Upper Limb Rehabilitation Gaming System
- Boat: the participant is asked to drive a boat moving laterally the trunk and to catch all the items during the exercise with both ULs. This exercise approaches reaching against gravity without support with flex–extension of the elbow and flex–extension and abduction of the shoulder, trunk control, and balance. Total duration: 4 min.
- Hockey: The participant is asked to hit the puck to reach the goal. This game exercises reaches with the table support, with flex–extension of the elbow and flex–extension and abduction of the shoulder. As the participant musts adapt to the return of the puck to hit it again, the reaction time and velocity are also trained. Total duration: 5 min
- Pinball: The participant is asked to reach a ball of a specific colour. This exercise trains reach the same way as the previous game. Total duration: 5 min
- Spheroids: The participant is asked to catch the balls and put them in the container of the same colour as the ball. This exercise trains reaches against gravity without support, with flex–extension of the elbow and flex–extension and abduction of the shoulder. Total duration: 5 min
- Robot: This exercise is conducted with a forearm support. The participant is asked to perform a thumb and index finger pinch to grab different objects to win points and facilitate the way to a kitten. This exercise aims to train fine motor skills. Total duration: 7 min
- Spaceship: This exercise is conducted with a forearm support. The participants are asked to turn the spaceship left or right to avoid asteroids and win points. This exercise trains the pronosupination of the forearm. Total duration: 7 min
- Monkey: The participant is asked to close the hand when the monkey reaches a branch and realise the hand grip to jump to the next one. This exercise trains the hand grip. Total duration: 7 min
2.3.3. Procedure
2.3.4. Blinding
2.3.5. Monitoring
2.4. Outcome Measures
2.4.1. Primary Outcome
Melbourne Assessment-2 (MA-2)
2.4.2. Secondary Outcomes
Kinematic Upper Limb Analysis
Box and Block Test (BBT)
Hand Grip Strength
Flexor Finger Muscle Groups Spasticity
Children’s Hand-Use Experience Questionnaire (CHEQ)
Finger Tapping Task (FTT)
Wechsler Intelligence Scale for Children V (WISC-V)
Beery–Buktenica Developmental Test of Visual–Motor Integration (Beery VMI)
Neuropsychological Battery for Children (NEPSY-II)
Test for Everyday Attention for Children (TEA-Ch)
Verbal Learning Test for Children Spain-Complutense (TAVECI)
Behaviour Rating Inventory for Executive Function 2 (BRIEF-2)
Evaluation System for Children and Adolescents (SENA)
Kidscreen-52 Scale
3. Results
3.1. Data Analysis
3.2. Dissemination Plans
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Package of Interventions for Rehabilitation: Module 3: Neurological Conditions; World Health Organization: Geneva, Switzerland, 2023; pp. 105–109. [Google Scholar]
- FEDACE Daño Cerebral Adquirido Infantil. Posicionamiento y Contextualización del Daño Cerebral Adquirido (DCAI) En España; FEDACE: Madrid, Spain, 2022; pp. 6–19. [Google Scholar]
- Defensor del Pueblo. La Atención Específica al daño Cerebral Adquirido Infantil; Defensor del Pueblo: Madrid, Spain, 2019; pp. 16–17. [Google Scholar]
- Park, E.S.; Yang, H.-J.; Park, J.B. Pediatric Traumatic Brain Injury: The Epidemiology in Korea. J. Korean Neurosurg. Soc. 2022, 65, 334–341. [Google Scholar] [CrossRef]
- Faccioli, S.; Pagliano, E.; Ferrari, A.; Maghini, C.; Siani, M.F.; Sgherri, G.; Cappetta, G.; Borelli, G.; Farella, G.M.; Foscan, M.; et al. Evidence-Based Management and Motor Rehabilitation of Cerebral Palsy Children and Adolescents: A Systematic Review. Front. Neurol. 2023, 14, 1171224. [Google Scholar] [CrossRef] [PubMed]
- Stadskleiv, K. Cognitive Functioning in Children with Cerebral Palsy. Dev. Med. Child Neurol. 2020, 62, 283–289. [Google Scholar] [CrossRef]
- Shen, J.; Koterba, C.; Samora, J.; Leonard, J.; Li, R.; Shi, J.; Yeates, K.O.; Xiang, H.; Taylor, G. Usability and Validity of a VR Cognitive Assessment Tool for Pediatric TBI. Rehabil. Psychol. 2022, 67, 587. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.K.S.; Tagawa, A.; Ho, R.C.-M.; Larbi, A.; Kua, E.H.; Mahendran, R.; Carollo, J.J.; Heyn, P.C. Commonalities in Biomarkers and Phenotypes between Mild Cognitive Impairment and Cerebral Palsy: A Pilot Exploratory Study. Aging 2021, 13, 1773–1816. [Google Scholar] [CrossRef]
- Keys, M.E.; Delaplain, P.; Kirby, K.A.; Boudreau, K.I.; Rosenbaum, K.; Inaba, K.; Lekawa, M.; Nahmias, J. Early Cognitive Impairment Is Common in Pediatric Patients Following Mild Traumatic Brain Injury. J. Trauma Acute Care Surg. 2021, 91, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Thébault, G.; Martin, S.; Brouillet, D.; Brunel, L.; Dinomais, M.; Presles, É.; Fluss, J.; Chabrier, S.; AVCnn Study Group; Darteyre, S.; et al. Manual Dexterity, but Not Cerebral Palsy, Predicts Cognitive Functioning after Neonatal Stroke. Dev. Med. Child Neurol. 2018, 60, 1045–1051. [Google Scholar] [CrossRef]
- Van Der Fels, I.M.J.; Te Wierike, S.C.M.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The Relationship between Motor Skills and Cognitive Skills in 4–16 Year Old Typically Developing Children: A Systematic Review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Veldman, S.L.C.; Santos, R.; Jones, R.A.; Sousa-Sá, E.; Okely, A.D. Associations between Gross Motor Skills and Cognitive Development in Toddlers. Early Hum. Dev. 2019, 132, 39–44. [Google Scholar] [CrossRef]
- Mailleux, L.; Simon-Martinez, C.; Klingels, K.; Jaspers, E.; Desloovere, K.; Demaerel, P.; Fiori, S.; Guzzetta, A.; Ortibus, E.; Feys, H. Structural Brain Damage and Upper Limb Kinematics in Children with Unilateral Cerebral Palsy. Front. Hum. Neurosci. 2017, 11, 607. [Google Scholar] [CrossRef]
- Khan, F.; Amatya, B.; Galea, M.P.; Gonzenbach, R.; Kesselring, J. Neurorehabilitation: Applied Neuroplasticity. J. Neurol. 2016, 264, 603–615. [Google Scholar] [CrossRef]
- Beretta, E.; Cesareo, A.; Biffi, E.; Schafer, C.; Galbiati, S.; Strazzer, S. Rehabilitation of Upper Limb in Children with Acquired Brain Injury: A Preliminary Comparative Study. J. Health Eng. 2018, 2018, 4208492. [Google Scholar] [CrossRef]
- Forsyth, R.J.; Roberts, L.; Henderson, R.; Wales, L. Rehabilitation after Paediatric Acquired Brain Injury: Longitudinal Change in Content and Effect on Recovery. Dev. Med. Child Neurol. 2022, 64, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Yi, S.-H.; Ao, L.; Tang, X.; Xu, X.; Shim, D.; Yoo, B.; Park, E.S.; Rha, D.-W. Virtual Reality Rehabilitation in Children with Brain Injury: A Randomized Controlled Trial. Dev. Med. Child Neurol. 2021, 63, 480–487. [Google Scholar] [CrossRef]
- Alrashidi, M.; Wadey, C.A.; Tomlinson, R.J.; Buckingham, G.; Williams, C.A. The Efficacy of Virtual Reality Interventions Compared with Conventional Physiotherapy in Improving the Upper Limb Motor Function of Children with Cerebral Palsy: A Systematic Review of Randomised Controlled Trials. Disabil. Rehabil. 2023, 45, 1773–1783. [Google Scholar] [CrossRef]
- Hordacre, B.; Moezzi, B.; Ridding, M.C. Neuroplasticity and Network Connectivity of the Motor Cortex Following Stroke: A Transcranial Direct Current Stimulation Study. Hum. Brain Mapp. 2018, 39, 3326–3339. [Google Scholar] [CrossRef]
- Ahmed, I.; Mustafaoglu, R.; Rossi, S.; Cavdar, F.A.; Agyenkwa, S.K.; Pang, M.Y.C.; Straudi, S. Non-Invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-Analysis. Arch. Phys. Med. Rehabil. 2023, 104, 1683–1697. [Google Scholar] [CrossRef] [PubMed]
- Fandim, J.V.; Saragiotto, B.T.; Porfírio, G.J.M.; Santana, R.F. Effectiveness of Virtual Reality in Children and Young Adults with Cerebral Palsy: A Systematic Review of Randomized Controlled Trial. Braz. J. Phys. Ther. 2021, 25, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Cameirão, M.S.; Badia, S.B.I.; Oller, E.D.; Verschure, P.F. Neurorehabilitation Using the Virtual Reality Based Rehabilitation Gaming System: Methodology, Design, Psychometrics, Usability and Validation. J. NeuroEng. Rehabil. 2010, 7, 48. [Google Scholar] [CrossRef]
- Aran, O.T.; Şahin, S.; Köse, B.; Ağce, Z.B.; Kayihan, H. Effectiveness of the Virtual Reality on Cognitive Function of Children with Hemiplegic Cerebral Palsy: A Single-Blind Randomized Controlled Trial. Int. J. Rehabil. Res. 2020, 43, 12–19. [Google Scholar] [CrossRef]
- Massetti, T.; da Silva, T.D.; Crocetta, T.B.; Guarnieri, R.; de Freitas, B.L.; Bianchi Lopes, P.; Watson, S.; Tonks, J.; de Mello Monteiro, C.B. The Clinical Utility of Virtual Reality in Neurorehabilitation: A Systematic Review. J. Cent. Nerv. Syst. Dis. 2018, 10, 1179573518813541. [Google Scholar] [CrossRef] [PubMed]
- Tobaiqi, M.A.; Albadawi, E.A.; Fadlalmola, H.A.; Albadrani, M.S. Application of Virtual Reality-Assisted Exergaming on the Rehabilitation of Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 7091. [Google Scholar] [CrossRef] [PubMed]
- Tarakci, E.; Arman, N.; Tarakci, D.; Kasapcopur, O. Leap Motion Controller–Based Training for Upper Extremity Rehabilitation in Children and Adolescents with Physical Disabilities: A Randomized Controlled Trial. J. Hand Ther. 2020, 33, 220–228.e1. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.-P.; Muthalib, M.; Yamin, S.; Hendy, A.M.; Bramstedt, K.; Kotsopoulos, E.; Perrey, S.; Ayaz, H. Does a Combination of Virtual Reality, Neuromodulation and Neuroimaging Provide a Comprehensive Platform for Neurorehabilitation?—A Narrative Review of the Literature. Front. Hum. Neurosci. 2016, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.-P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-Based Guidelines on the Therapeutic Use of Transcranial Direct Current Stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Moura, R.C.F.; Santos, C.A.; Grecco, L.A.C.; Albertini, G.; Cimolin, V.; Galli, M.; Oliveira, C.S. Effects of a Single Session of Transcranial Direct Current Stimulation on Upper Limb Movements in Children with Cerebral Palsy: A Randomized, Sham-Controlled Study. Dev. Neurorehabil. 2017, 20, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, R.; Aloyuni, S.; Kashoo, F.; Waly, M.; Singh, H.; Ahmad, M. Does Transcranial Direct Current Stimulation Affect Selective Visual Attention in Children with Left-Sided Infantile Hemiplegia? A Randomized, Controlled Pilot Study. Brain Impair. 2021, 22, 152–164. [Google Scholar] [CrossRef]
- Ko, E.; Hong, M.; Choi, E.; Yuk, J.; Yum, M.; Sung, I. Effect of Anodal Transcranial Direct Current Stimulation Combined with Cognitive Training for Improving Cognition and Language Among Children with Cerebral Palsy with Cognitive Impairment: A Pilot, Randomized, Controlled, Double-Blind, and Clinical Trial. Front. Pediatr. 2021, 9, 713792. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Alekseichuk, I.; Bikson, M.; Brockmöller, J.; Brunoni, A.R.; Chen, R.; Cohen, L.G.; Dowthwaite, G.; Ellrich, J.; Flöel, A.; et al. Low Intensity Transcranial Electric Stimulation: Safety, Ethical, Legal Regulatory and Application Guidelines. Clin. Neurophysiol. 2017, 128, 1774–1809. [Google Scholar] [CrossRef]
- Woods, A.; Antal, A.; Bikson, M.; Boggio, P.; Brunoni, A.; Celnik, P.; Cohen, L.; Fregni, F.; Herrmann, C.; Kappenman, E.; et al. A Technical Guide to tDCS, and Related Non-Invasive Brain Stimulation Tools. Clin. Neurophysiol. 2016, 127, 1031–1048. [Google Scholar] [CrossRef]
- Hsu, S.-P.; Lu, C.-F.; Lin, B.-F.; Tang, C.-W.; Kuo, I.-J.; Tsai, Y.-A.; Guo, C.-Y.; Lee, P.-L.; Shyu, K.-K.; Niddam, D.M.; et al. Effects of Bihemispheric Transcranial Direct Current Stimulation on Motor Recovery in Subacute Stroke Patients: A Double-Blind, Randomized Sham-Controlled Trial. J. NeuroEng. Rehabil. 2023, 20, 27. [Google Scholar] [CrossRef]
- Valenzuela-López, L.; Moreno-Verdú, M.; Cuenca-Zaldívar, J.N.; Romero, J.P. Effects of Hand Motor Interventions on Cognitive Outcomes Post-Stroke: A Systematic Review and Bayesian Network Meta-Analysis. Arch. Phys. Med. Rehabil. 2024, in press. [Google Scholar] [CrossRef]
- Grecco, L.A.C.; Cosmo, C.; Silva, A.L.S.; Rizzutti, S.; Oliveira, C.S.; Muszkat, M. Effects of Dual Task Training and Transcranial Direct Current Stimulation in Children with Spastic Cerebral Palsy: A Pilot Randomized Control Trial. Dev. Neurorehabil. 2023, 26, 279–286. [Google Scholar] [CrossRef]
- Bruchhage, M.M.K.; Ngo, G.-C.; Schneider, N.; D’Sa, V.; Deoni, S.C.L. Functional Connectivity Correlates of Infant and Early Childhood Cognitive Development. Brain Struct. Funct. 2020, 225, 669–681. [Google Scholar] [CrossRef]
- Guidance for Clinical Trial Protocols—SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials). Available online: https://www.spirit-statement.org/ (accessed on 27 December 2023).
- Randall, M.; Imms, C.; Carey, L.M.; Pallant, J.F. Rasch Analysis of The Melbourne Assessment of Unilateral Upper Limb Function. Dev. Med. Child Neurol. 2014, 56, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.A.; Warriner, E.M. Review of the NEPSY: A Developmental Neuropsychological Assessment. Clin. Neuropsychol. 2001, 15, 240–249. [Google Scholar] [CrossRef]
- MACS—Manual Ability Classification System. Available online: https://www.macs.nu/ (accessed on 25 June 2024).
- Haynes, A.; Lenz, A.; Stalder, O.; Limacher, A. Presize: An R-Package for Precision-Based Sample Size Calculation in Clinical Research. J. Open Source Softw. 2021, 6, 3118. [Google Scholar] [CrossRef]
- Wang, T.-N.; Liang, K.-J.; Liu, Y.-C.; Shieh, J.-Y.; Chen, H.-L. Psychometric and Clinimetric Properties of the Melbourne Assessment 2 in Children with Cerebral Palsy. Arch. Phys. Med. Rehabil. 2017, 98, 1836–1841. [Google Scholar] [CrossRef] [PubMed]
- Home—GraphPad. Available online: https://www.graphpad.com/ (accessed on 10 January 2024).
- Lazzari, R.D.; Politti, F.; Belina, S.F.; Grecco, L.A.C.; Santos, C.A.; Dumont, A.J.L.; Lopes, J.B.P.; Cimolin, V.; Galli, M.; Santos Oliveira, C. Effect of Transcranial Direct Current Stimulation Combined with Virtual Reality Training on Balance in Children with Cerebral Palsy: A Randomized, Controlled, Double-Blind, Clinical Trial. J. Mot. Behav. 2017, 49, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Grecco, L.A.C.; Duarte, N.A.C.; Mendonça, M.E.; Cimolin, V.; Galli, M.; Fregni, F.; Oliveira, C.S. Transcranial Direct Current Stimulation during Treadmill Training in Children with Cerebral Palsy: A Randomized Controlled Double-Blind Clinical Trial. Res. Dev. Disabil. 2014, 35, 2840–2848. [Google Scholar] [CrossRef]
- Gillick, B.T.; Rich, T.; Nemanich, S.T.; Chen, C.-Y.; Menk, J.; Mueller, B.; Chen, M.; Ward, M.; Meekins, G.; Feyma, T.; et al. Transcranial Direct Current Stimulation and Constraint-Induced Therapy in Cerebral Palsy: A Randomized, Blinded, Sham-Controlled Clinical Trial. Eur. J. Paediatr. Neurol. 2018, 22, 358–368. [Google Scholar] [CrossRef]
- Kirton, A.; Ciechanski, P.; Zewdie, E.; Andersen, J.; Nettel-Aguirre, A.; Carlson, H.; Carsolio, L.; Herrero, M.; Quigley, J.; Mineyko, A.; et al. Transcranial Direct Current Stimulation for Children with Perinatal Stroke and Hemiparesis. Neurology 2017, 88, 259–267. [Google Scholar] [CrossRef]
- Starstim tES|Solutions|Neuroelectrics. Available online: https://www.neuroelectrics.com/ (accessed on 4 July 2024).
- Westwood, S.J.; Criaud, M.; Lam, S.-L.; Lukito, S.; Wallace-Hanlon, S.; Kowalczyk, O.S.; Kostara, A.; Mathew, J.; Agbedjro, D.; Wexler, B.E.; et al. Transcranial Direct Current Stimulation (tDCS) Combined with Cognitive Training in Adolescent Boys with ADHD: A Double-Blind, Randomised, Sham-Controlled Trial. Psychol. Med. 2023, 53, 497–512. [Google Scholar] [CrossRef]
- Garrido, M.G.; Alvarez, E.Á.; Fabrizio Acevedo, P.; Moyano, Á.; Castillo, N.; Cavada, G. Early Transcranial Direct Current Stimulation with Modified Constraint-Induced Movement Therapy for Motor and Functional Upper Limb Recovery in Hospitalized Patients with Stroke: A Randomized, Multicentre, Double-Blind, Clinical Trial. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2023, 16, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Cameirão, M.S.; Badia, S.B.I.; Duarte, E.; Frisoli, A.; Verschure, P.F.M.J. The Combined Impact of Virtual Reality Neurorehabilitation and Its Interfaces on Upper Extremity Functional Recovery in Patients with Chronic Stroke. Stroke 2012, 43, 2720–2728. [Google Scholar] [CrossRef]
- Ballester, B.R.; Maier, M.; San Segundo Mozo, R.M.; Castañeda, V.; Duff, A.; MJ Verschure, P.F. Counteracting Learned Non-Use in Chronic Stroke Patients with Reinforcement-Induced Movement Therapy. J. NeuroEng. Rehabil. 2016, 13, 74. [Google Scholar] [CrossRef] [PubMed]
- Digital Worlds That Feel Human|Ultraleap. Available online: https://www.ultraleap.com/ (accessed on 9 January 2024).
- Gillick, B.T.; Krach, L.E.; Feyma, T.; Rich, T.L.; Moberg, K.; Menk, J.; Cassidy, J.; Kimberley, T.; Carey, J.R. Safety of Primed Repetitive Transcranial Magnetic Stimulation and Modified Constraint-Induced Movement Therapy in a Randomized Controlled Trial in Pediatric Hemiparesis. Arch. Phys. Med. Rehabil. 2015, 96, S104–S113. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.; Giuffre, A.; Ciechanski, P.; Carlson, H.; Zewdie, E.; Kuo, H.-C.; Kirton, A. Effects of High-Definition and Conventional Transcranial Direct-Current Stimulation on Motor Learning in Children. Front. Neurosci. 2018, 12, 787. [Google Scholar] [CrossRef]
- Wu, G.; van der Helm, F.C.T.; Veeger, H.E.J.D.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef]
- Kinovea Reference Manual—Kinovea 0.9.4 Documentation. Available online: https://www.kinovea.org/help/staging/index.html (accessed on 27 November 2023).
- Marrodán Serrano, M.D.; Romero Collazos, J.F.; Moreno Romero, S.; Mesa Santurino, M.S.; Cabañas Armesilla, M.D.; Pacheco del Cerro, J.L.; González-Montero de Espinosa, M. Dinamometría en niños y jóvenes de entre 6 y 18años: Valores de referencia, asociación con tamaño y composición corporal. Pediatría 2009, 70, 340–348. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and Validity of Grip and Pinch Strength Evaluations. J. Hand Surg. Am. 1984, 9, 222–226. [Google Scholar] [CrossRef] [PubMed]
- AMADEO®: The Pioneer in Finger-Hand-Rehabilitation|Tyrotherapy. Available online: https://tyromotion.com/en/products/amadeo/ (accessed on 27 November 2023).
- Harb, A.; Kishner, S. Modified Ashworth Scale. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Adar, S.; Demircan, A.; Akçin, A.İ.; Dündar, Ü.; Toktaş, H.; Yeşil, H.; Eroğlu, S.; Eyvaz, N.; Beştaş, E.; Köseoğlu Toksoy, C. Evaluation of Finger Strength and Spasticity in Hemiplegic Patients Using Hand-Finger Robotic Device: A Validity and Reliability Study. Medicine 2023, 102, e36479. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, R.; Miren Gutiérrez-Muto, A.; Sanz-Morère, C.B.; Gómez, A.; Politi, A.M.; Lunardini, F.; Baccini, M.; Cecchi, F.; León, N.; Oliviero, A.; et al. Spasticity Evaluation with the Amadeo Tyromotion Device in Patients with Hemispheric Stroke. Front. Neurorobot. 2023, 17, 1172770. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.L.; Williams, G. A Historical Review of the Evolution of the Tardieu Scale. Brain Inj. 2018, 32, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Sköld, A.; Hermansson, L.N.; Krumlinde-Sundholm, L.; Eliasson, A.-C. Development and Evidence of Validity for the Children’s Hand-Use Experience Questionnaire (CHEQ). Dev. Med. Child Neurol. 2011, 53, 436–442. [Google Scholar] [CrossRef] [PubMed]
- McRorie, M.; Cooper, C. Psychomotor Movement and IQ. Personal. Individ. Differ. 2004, 37, 523–531. [Google Scholar] [CrossRef]
- Austin, D.; McNames, J.; Klein, K.; Jimison, H.; Pavel, M. A Statistical Characterization of the Finger Tapping Test: Modeling, Estimation, and Applications. IEEE J. Biomed. Health Inf. 2015, 19, 501–507. [Google Scholar] [CrossRef] [PubMed]
- San Miguel Montes, L.E.; Allen, D.N.; Puente, A.E.; Neblina, C. Validity of the WISC-IV Spanish for a Clinically Referred Sample of Hispanic Children. Psychol. Assess. 2010, 22, 465–469. [Google Scholar] [CrossRef]
- Harvey, E.M.; Leonard-Green, T.K.; Mohan, K.M.; Kulp, M.T.; Davis, A.L.; Miller, J.M.; Twelker, J.D.; Campus, I.; Dennis, L.K. Inter-Rater and Test-Retest Reliability of the Beery VMI in Schoolchildren. Optom. Vis. Sci. 2017, 94, 598–605. [Google Scholar] [CrossRef]
- Heaton, S.C.; Reader, S.K.; Preston, A.S.; Fennell, E.B.; Puyana, O.E.; Gill, N.; Johnson, J.H. The Test of Everyday Attention for Children (TEA-Ch): Patterns of Performance in Children with ADHD and Clinical Controls. Child Neuropsychol. 2001, 7, 251–264. [Google Scholar] [CrossRef]
- TAVECI. Test de Aprendizaje Verbal España-Complutense Infantil. Available online: https://web.teaediciones.com/taveci-test-de-aprendizaje-verbal-espa%C3%B1a-complutense-infantil.aspx (accessed on 13 September 2023).
- BRIEF-2. Evaluación Conductual de La Función Ejecutiva-2. Available online: https://web.teaediciones.com/BRIEF-2-Evaluacion-Conductual-de-la-Funcion-Ejecutiva.aspx (accessed on 13 September 2023).
- Sánchez-Sánchez, F.; Fernández-Pinto, I.; Santamaría, P.; Carrasco, M.A. SENA, Sistema de Evaluación de Niños y Adolescentes: Proceso de desarrollo y evidencias de fiabilidad y validez. Rev. Psicol. Clín. Niños Adolesc. 2016, 3, 23–34. [Google Scholar]
- Tebe, C.; Berra, S.; Herdman, M.; Aymerich, M.; Alonso, J.; Rajmil, L. Fiabilidad y validez de la versión española del KIDSCREEN-52 para población infantil y adolescente. Med. Clin. 2008, 130, 650–654. [Google Scholar] [CrossRef] [PubMed]
- IBM SPSS Statistics. Available online: https://www.ibm.com/es-es/products/spss-statistics (accessed on 10 January 2024).
- International Committee of Medical Journal Editors (ICMJE)|Recommendations. Available online: https://www.icmje.org/recommendations/ (accessed on 10 January 2024).
- Corti, C.; Poggi, G.; Romaniello, R.; Strazzer, S.; Urgesi, C.; Borgatti, R.; Bardoni, A. Feasibility of a Home-Based Computerized Cognitive Training for Pediatric Patients with Congenital or Acquired Brain Damage: An Explorative Study. PLoS ONE 2018, 13, e0199001. [Google Scholar] [CrossRef]
- Sakzewski, L.; Ziviani, J.; Boyd, R.N. Efficacy of Upper Limb Therapies for Unilateral Cerebral Palsy: A Meta-Analysis. Pediatrics 2014, 133, e175–e204. [Google Scholar] [CrossRef] [PubMed]
- Plasschaert, V.F.P.; Vriezekolk, J.E.; Aarts, P.B.M.; Geurts, A.C.H.; Van den Ende, C.H.M. Interventions to Improve Upper Limb Function for Children with Bilateral Cerebral Palsy: A Systematic Review. Dev. Med. Child Neurol. 2019, 61, 899–907. [Google Scholar] [CrossRef] [PubMed]
- El-Shamy, S.M.; El-Banna, M.F. Effect of Wii Training on Hand Function in Children with Hemiplegic Cerebral Palsy. Physiother. Theory Pract. 2020, 36, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Sajan, J.E.; John, J.A.; Grace, P.; Sabu, S.S.; Tharion, G. Wii-Based Interactive Video Games as a Supplement to Conventional Therapy for Rehabilitation of Children with Cerebral Palsy: A Pilot, Randomized Controlled Trial. Dev. Neurorehabil. 2017, 20, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Montoro-Cárdenas, D.; Cortés-Pérez, I.; Ibancos-Losada, M.D.R.; Zagalaz-Anula, N.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Nintendo® Wii Therapy Improves Upper Extremity Motor Function in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12343. [Google Scholar] [CrossRef]
- Antal, A.; Luber, B.; Brem, A.-K.; Bikson, M.; Brunoni, A.R.; Cohen Kadosh, R.; Dubljević, V.; Fecteau, S.; Ferreri, F.; Flöel, A.; et al. Non-Invasive Brain Stimulation and Neuroenhancement. Clin. Neurophysiol. Pract. 2022, 7, 146–165. [Google Scholar] [CrossRef]
- O’Leary, G.H.; Jenkins, D.D.; Coker-Bolt, P.; George, M.S.; Kautz, S.; Bikson, M.; Gillick, B.T.; Badran, B.W. From Adults to Pediatrics: A Review Noninvasive Brain Stimulation (NIBS) to Facilitate Recovery from Brain Injury. Prog. Brain Res. 2021, 264, 287–322. [Google Scholar] [CrossRef]
- Kesikburun, S. Non-Invasive Brain Stimulation in Rehabilitation. Turk. J. Phys. Med. Rehabil. 2022, 68, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, C.; Santos, L.; Peterson, M.D.; Ehinger, M. Safety of Noninvasive Brain Stimulation in Children and Adolescents. Brain Stimul. 2015, 8, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Nitsche, M.A. Physiological Basis of Transcranial Direct Current Stimulation. Neuroscientist 2011, 17, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Duarte, N.A.C.; Grecco, L.A.C.; Galli, M.; Fregni, F.; Oliveira, C.S. Effect of Transcranial Direct-Current Stimulation Combined with Treadmill Training on Balance and Functional Performance in Children with Cerebral Palsy: A Double-Blind Randomized Controlled Trial. PLoS ONE 2014, 9, e105777. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Yan, Z.; Gu, F.; Tao, X.; Xue, T.; Liu, D.; Wang, Z. Transcranial Direct Current Stimulation with Virtual Reality versus Virtual Reality Alone for Upper Extremity Rehabilitation in Stroke: A Meta-Analysis. Heliyon 2023, 9, e12695. [Google Scholar] [CrossRef] [PubMed]
- Llorens, R.; Fuentes, M.A.; Borrego, A.; Latorre, J.; Alcañiz, M.; Colomer, C.; Noé, E. Effectiveness of a Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Intervention on Upper Limb Function in Chronic Individuals Post-Stroke with Persistent Severe Hemiparesis: A Randomized Controlled Trial. J. Neuroeng. Rehabil. 2021, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Cui, L.; Wang, J.; Feng, W.; Bao, Y.; Xie, Q. Effects of Transcranial Direct Current Stimulation with Virtual Reality on Upper Limb Function in Patients with Ischemic Stroke: A Randomized Controlled Trial. J. Neuroeng. Rehabil. 2020, 17, 73. [Google Scholar] [CrossRef]
- Steiner, L.; Federspiel, A.; Slavova, N.; Wiest, R.; Grunt, S.; Steinlin, M.; Everts, R. Cognitive Outcome Is Related to Functional Thalamo-Cortical Connectivity after Paediatric Stroke. Brain Commun. 2022, 4, fcac110. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Patients between 7 and 15 years of age, with a Z value equal or higher to −1 in comprehension of instructions of the neuropsychological battery for children (NEPSY II) | Dermatological problems, cranial holes or fissures in the electrode application area (psoriasis, dermatitis on the scalp or face) |
Ischemic or haemorrhagic stroke, traumatic brain injury, cerebral palsy, or other causes of non-progressive brain damage with a neuroimaging study test, susceptible to treatment with the established intervention | Ongoing brain damage such as oncologic processes and neurodegenerative diseases, and any neurological disease different from that described in the inclusion criteria |
A 1-year evolution minimum since the injury, conducting a rehabilitation process | Pacemakers, medication pumps, stimulators (vagal, cerebral, transcutaneous), ventriculoperitoneal shunts, or aneurysm clips |
Absence of previous brain injuries prior to the one prompting treatment | Presence of implants or metal pieces in the head excluding tooth fillings |
Score between II and IV on the Manual Ability Classification System (MACS) scale for manual ability assessment | Significant language difficulties that restrict proper understanding of activities or severely limit expression |
Signed informed consent | Moderate or severe mood disorders diagnosed by their paediatrician |
Increased muscle tone according to the modified Ashworth scale ranging from 1 to 1+ | Extreme hypotony or increased muscle tone above +1 in Modified Ashworth Scale (MAS) in UL muscles |
Minimum score of 1 on each item assessed in the Melbourne Assessment-2 (MA-2) | Uncontrolled medical issues (acute phase pathologies without medical or pharmacological treatment with proven efficacy or life-threatening conditions) |
Stable drug treatment, without changes during the participation | Having undergone surgical procedures involving the susceptible to treatment upper limb in the 3 months prior to the onset of the training sessions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerezo-Zarzuelo, A.; Rios-Lago, M.; Sanchez-Cuesta, F.J.; Gavilan-Agusti, B.; Romero, J.P. Transcranial Direct Current Stimulation as Adjuvant to Gamified Rehabilitation for Upper Limb Function in Paediatric Brain Damage (CHILDBOOST Project): A Study Protocol for a Triple-Blind Randomised Controlled Trial. Appl. Sci. 2024, 14, 6698. https://doi.org/10.3390/app14156698
Cerezo-Zarzuelo A, Rios-Lago M, Sanchez-Cuesta FJ, Gavilan-Agusti B, Romero JP. Transcranial Direct Current Stimulation as Adjuvant to Gamified Rehabilitation for Upper Limb Function in Paediatric Brain Damage (CHILDBOOST Project): A Study Protocol for a Triple-Blind Randomised Controlled Trial. Applied Sciences. 2024; 14(15):6698. https://doi.org/10.3390/app14156698
Chicago/Turabian StyleCerezo-Zarzuelo, Almudena, Marcos Rios-Lago, Francisco Jose Sanchez-Cuesta, Beatriz Gavilan-Agusti, and Juan Pablo Romero. 2024. "Transcranial Direct Current Stimulation as Adjuvant to Gamified Rehabilitation for Upper Limb Function in Paediatric Brain Damage (CHILDBOOST Project): A Study Protocol for a Triple-Blind Randomised Controlled Trial" Applied Sciences 14, no. 15: 6698. https://doi.org/10.3390/app14156698
APA StyleCerezo-Zarzuelo, A., Rios-Lago, M., Sanchez-Cuesta, F. J., Gavilan-Agusti, B., & Romero, J. P. (2024). Transcranial Direct Current Stimulation as Adjuvant to Gamified Rehabilitation for Upper Limb Function in Paediatric Brain Damage (CHILDBOOST Project): A Study Protocol for a Triple-Blind Randomised Controlled Trial. Applied Sciences, 14(15), 6698. https://doi.org/10.3390/app14156698