Is Mild Really Mild?: Generating Longitudinal Profiles of Stroke Survivor Impairment and Impact Using Unsupervised Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Availability
2.2. Study Design
2.2.1. Participants and Study Size
2.2.2. Quantitative Measures
National Institute of Health Stroke Scale (NIHSS)
Montreal Cognitive Assessment (MoCA)
Montgomery–Åsberg Depression Rating Scale (MADRS)
Modified Ranking Scale (mRS)
Rapid Assessment of Physical Activity (RAPA) Questionnaire
Work and Social Adjustment Questionnaire (WSAS)
Stroke Impact Scale (SIS)
2.3. Methodology
2.3.1. Data Preprocessing
2.3.2. Data Standardization—Creating a Stroke Impairment Index
2.3.3. Growing Self-Organizing Maps to Detect Variants of Impairment
2.3.4. Identification of Impairment Profiles
- (a)
- Profiles (subgroupings) within NIHSS assessment on day 3–7 after stroke;
- (b)
- Profiles across measures on day 3–7 after stroke;
- (c)
- Profiles across measures at 3 months after stroke;
- (d)
- Profiles across measures at 12 months after stroke.
2.3.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of Stroke Sample
3.2. Stroke Survivor Clusters Based on the NIH Stroke Scale
3.3. Profiles across Measures
3.4. Different Profiles of Survivors of Mild Stroke at Different Time Points of Their Recovery Trajectories
3.4.1. Profiling at Day 3–7 after Stroke
3.4.2. Profiling at 3 Months after Stroke
3.4.3. Profiling at 12 Months after Stroke
3.5. Capturing Individual Patient Trajectories
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Lyden, P. Using the National Institutes of Health Stroke Scale. Stroke 2017, 48, 513–519. [Google Scholar] [CrossRef]
- Kasner, S.E. Clinical interpretation and use of stroke scales. Lancet Neurol. 2006, 5, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Spilker, J.; Kongable, G.; Barch, C.; Braimah, J.; Brattina, P.; Daley, S.; Donnarumma, R.; Rapp, K.; Sailor, S. Using the NIH Stroke Scale to assess stroke patients. The NINDS rt-PA Stroke Study Group. J. Neurosci. Nurs. 1997, 29, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, G.E.; Möller, A.; Blomstrand, C. Consequences of mild stroke in persons. Cerebrovasc. Dis. 2003, 16, 383–388. [Google Scholar] [CrossRef]
- Waller, A.; Fakes, K.; Carey, M.; Dizon, J.; Parrey, K.; Coad, M.; Sanson-Fisher, R. Quality of life and mood disorders of mild to moderate stroke survivors in the early post-hospital discharge phase: A cross-sectional survey study. BMC Psychol. 2023, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, G.E.; Möller, A.; Blomstrand, C. Managing an everyday life of uncertainty—A qualitative study of coping in persons with mild stroke. Disabil. Rehabil. 2009, 31, 773–782. [Google Scholar] [CrossRef]
- Edwards, D.F.; Hahn, M.; Baum, C.; Dromerick, A.W. The impact of mild stroke on meaningful activity and life satisfaction. J. Stroke Cerebrovasc. Dis. 2006, 15, 151–157. [Google Scholar] [CrossRef]
- Chang, W.H.; Sohn, M.K.; Lee, J.; Kim, D.Y.; Lee, S.G.; Shin, Y.I.; Oh, G.-J.; Lee, Y.-S.; Joo, M.C.; Han, E.Y.; et al. Long-term functional outcomes of patients with very mild stroke: Does a NIHSS score of 0 mean no disability? An interim analysis of the KOSCO study. Disabil. Rehabil. 2017, 39, 904–910. [Google Scholar] [CrossRef]
- Vlachos, G.; Ihle-Hansen, H.; Wyller, T.B.; Brækhus, A.; Mangset, M.; Hamre, C.; Fure, B. Factors determining not returning to full-time work 12 months after mild ischemic stroke. Arch. Rehabil. Res. Clin. Transl. 2023, 5, 100245. [Google Scholar] [CrossRef]
- Doyle, P.J. Measuring health outcomes in stroke survivors. Arch. Phys. Med. Rehabil. 2002, 83, S39–S43. [Google Scholar] [CrossRef] [PubMed]
- Björkdahl, A.; Rafsten, L.; Petersson, C.; Sunnerhagen, K.S.; Danielsson, A. Effect of very early supported discharge versus usual care on activities of daily living ability after mild stroke: A randomized controlled trial. J. Rehabil. Med. 2023, 55, jrm12363. [Google Scholar] [CrossRef]
- Alahakoon, D.; Halgamuge, S.K.; Srinivasan, B. Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans. Neural Netw. 2000, 11, 601–614. [Google Scholar] [CrossRef]
- Carey, L.M.; Crewther, S.; Salvado, O.; Lindén, T.; Connelly, A.; Wilson, W.; Howells, D.W.; Churilov, L.; Ma, H.; Tse, T.; et al. STroke imAging pRevention and Treatment (START): A longitudinal stroke cohort study: Clinical trials protocol. Int. J. Stroke 2015, 10, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, J.; Hayward, K.S.; Kwakkel, G.; Ward, N.S.; Wolf, S.L.; Borschmann, K.; Krakauer, J.W.; Boyd, L.A.; Carmichael, S.T.; Corbett, D.; et al. Agreed definitions and a shared vision for new standards in stroke recovery research: The stroke recovery and rehabilitation roundtable taskforce. Int. J. Stroke 2017, 12, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.T.L.; Hareendran, A.; Grant, M.; Baird, T.; Schulz, U.G.R.; Muir, K.W.; Bone, I. Improving the assessment of outcomes in stroke: Use of a structured interview to assign grades on the modified Rankin Scale. Stroke 2002, 33, 2243–2246. [Google Scholar] [CrossRef] [PubMed]
- Rost, N.S.; Bottle, A.; Lee, J.M.; Randall, M.; Middleton, S.; Shaw, L.; Thijs, V.; Rinkel, G.J.E.; Hemmen, T.M. Stroke severity is a crucial predictor of outcome: An international prospective validation study. J. Am. Heart Assoc. 2016, 5, e002433. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Dong, Y.; Sharma, V.K.; Chan, B.P.L.; Venketasubramanian, N.; Teoh, H.L.; Seet, R.C.S.; Tanicala, S.; Chan, Y.H.; Chen, C. The Montreal Cognitive Assessment (MoCA) is superior to the Mini-Mental State Examination (MMSE) for the detection of vascular cognitive impairment after acute stroke. J. Neurol. Sci. 2010, 299, 15–18. [Google Scholar] [CrossRef]
- Montgomery, S.A.; Asberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 1979, 134, 382–389. [Google Scholar] [CrossRef]
- Williams, J.B.W.; Kobak, K.A. Development and reliability of a structured interview guide for the Montgomery Asberg Depression Rating Scale (SIGMA). Br. J. Psychiatry 2008, 192, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Topolski, T.D.; LoGerfo, J.; Patrick, D.L.; Williams, B.; Walwick, J.; Patrick, M.B. The Rapid Assessment of Physical Activity (RAPA) among older adults. Prev. Chronic Dis. 2006, 3, A118. [Google Scholar] [PubMed]
- Mundt, J.C.; Marks, I.M.; Shear, M.K.; Greist, J.H. The Work and Social Adjustment Scale: A simple measure of impairment in functioning. Br. J. Psychiatry 2002, 180, 461–464. [Google Scholar] [CrossRef]
- Zahra, D.; Qureshi, A.; Henley, W.; Taylor, R.; Quinn, C.; Pooler, J.; Hardy, G.; Newbold, A.; Byng, R. The work and social adjustment scale: Reliability, sensitivity and value. Int. J. Psychiatry Clin. Pract. 2014, 18, 131–138. [Google Scholar] [CrossRef]
- Duncan, P.W.; Wallace, D.; Lai, S.M.; Johnson, D.; Embretson, S.; Laster, L.J. The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke 1999, 30, 2131–2140. [Google Scholar] [CrossRef]
- Duncan, P.W.; Bode, R.K.; Min Lai, S.; Perera, S.; Glycine Antagonist in Neuroprotection Americans Investigators. Rasch analysis of a new stroke-specific outcome scale: The Stroke Impact Scale. Arch. Phys. Med. Rehabil. 2003, 84, 950–963. [Google Scholar] [CrossRef]
- Senadheera, I.; Larssen, B.C.; Mak-Yuen, Y.Y.K.; Steinfort, S.; Carey, L.M.; Alahakoon, D. Profiling Somatosensory Impairment after Stroke: Characterizing Common “Fingerprints” of Impairment Using Unsupervised Machine Learning-Based Cluster Analysis of Quantitative Measures of the Upper Limb. Brain Sci. 2023, 13, 1253. [Google Scholar] [CrossRef]
- Nawaratne, R.; Alahakoon, D.; De Silva, D.; Yu, X. HT-GSOM: Dynamic self-organizing map with transience for human activity recognition. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki-Espoo, Finland, 22–25 July 2019; pp. 270–273. [Google Scholar]
- Nawaratne, R.; Kahawala, S.; Nguyen, S.; De Silva, D. A generative latent space approach for real-time road surveillance in smart cities. IEEE Trans. Ind. Inform. 2021, 17, 4872–4881. [Google Scholar] [CrossRef]
- Nawaratne, R.; Alahakoon, D.; De Silva, D.; Kumara, H.; Yu, X. Hierarchical two-stream growing self-organizing maps with transience for human activity recognition. IEEE Trans. Ind. Inform. 2019, 16, 7756–7764. [Google Scholar] [CrossRef]
- Dokmanic, I.; Parhizkar, R.; Ranieri, J.; Vetterli, M. Euclidean Distance Matrices: Essential theory, algorithms, and applications. IEEE Signal Process. Mag. 2015, 32, 12–30. [Google Scholar] [CrossRef]
- Kim, T.K. T test as a parametric statistic. Korean J. Anesthesiol. 2015, 68, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Grefkes, C.; Fink, G.R. Recovery from stroke: Current concepts and future perspectives. Neurol. Res. Pract. 2020, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Saa, J.P.; Tse, T.; Baum, C.M.; Cumming, T.; Josman, N.; Rose, M.; O’Keefe, S.; Sewell, K.; Nguyen, V.; Carey, L.M. Cognitive recovery after stroke: A meta-analysis and meta regression of intervention and cohort studies. Neurorehabil. Neural Repair 2021, 35, 585–600. [Google Scholar] [CrossRef] [PubMed]
- King Rosemarie, B. Quality of life after stroke. Stroke 1996, 27, 1467–1472. [Google Scholar] [CrossRef] [PubMed]
- Tengs, T.O.; Yu, M.; Luistro, E. Health-related quality of life after stroke a comprehensive review. Stroke 2001, 32, 964–972. [Google Scholar] [CrossRef]
- Wolf, T.J.; Baum, C.; Connor, L.T. Changing face of stroke: Implications for occupational therapy practice. Am. J. Occup. Ther. 2009, 63, 621–625. [Google Scholar] [CrossRef]
n (%) | |
---|---|
Sex | |
Male | 51 (69.9%) |
Female | 22 (30.1%) |
Age group | |
Mean (years) | 71.45 |
Standard deviation (years) | 11.37 |
Ethnicity | |
Asian | 4 (5.5%) |
Australian or New Zealander | 46 (63.0%) |
European | 17 (23.3%) |
Other | 6 (8.2%) |
Marital Status | |
Divorced | 13 (17.8%) |
Married/de facto | 51 (69.9%) |
Other | 2 (2.7%) |
Single | 2 (2.7%) |
Widowed | 5 (6.8%) |
Employment | |
Employed for wages | 18 (24.7%) |
Homemaker | 1 (1.4%) |
Out of work for <1 year | 2 (2.7%) |
Retired | 44 (60.3%) |
Self-employed | 7 (9.6%) |
Unable to work | 1 (1.4%) |
Time after Stroke | Median | IQR | Q1 | Q3 |
---|---|---|---|---|
Day 3–7 | ||||
NIHSS | 2.00 | 2.25 | 1.00 | 3.25 |
MoCA | 26.00 | 5.25 | 22.75 | 28.00 |
MADRS | 3.00 | 5.25 | 0.75 | 6.00 |
3 months | ||||
NIHSS | 0.00 | 1.00 | 0.00 | 1.00 |
MoCA | 27.00 | 4.00 | 25.00 | 29.00 |
MADRS | 4.00 | 8.00 | 1.00 | 9.00 |
mRS | 1.00 | 1.00 | 1.00 | 2.00 |
RAPA | 5.00 | 3.00 | 4.00 | 7.00 |
WSAS | 2.00 | 10.00 | 0.00 | 10.00 |
SIS | 93.06 | 9.21 | 87.55 | 96.76 |
12 months | ||||
NIHSS | 0.00 | 1.00 | 0.00 | 1.00 |
MoCA | 27.00 | 4.00 | 24.00 | 28.00 |
MADRS | 3.00 | 8.00 | 0.00 | 8.00 |
mRS | 1.00 | 2.00 | 0.00 | 2.00 |
RAPA | 5.00 | 4.00 | 3.00 | 7.00 |
WSAS | 2.00 | 8.00 | 0.00 | 8.00 |
SIS | 93.58 | 11.39 | 86.21 | 97.60 |
Profile 1: Sensory Loss and Impairment in Motor Abilities of the Right Leg | ||
Sensory Loss | Profile 1 | Other Participants |
Mean | 0.571 | 0.068 |
Variance | 0.264 | 0.064 |
Observations | 14 (19.2%) | 59 (80.8%) |
p = 0.001 | ||
Motor leg (right) | ||
Mean | 0.500 | 0.017 |
Variance | 0.423 | 0.017 |
Observations | 14 (19.2%) | 59 (80.8%) |
p = 0.008 | ||
Profile 2: Facial Palsy | ||
Profile 2 | Other Participants | |
Mean | 1.727 | 0.274 |
Variance | 0.618 | 0.202 |
Observations | 11 (15.06%) | 62 (84.93%) |
p = 0.000 | ||
Profile 3: Limb Ataxia | ||
Profile 3 | Other Participants | |
Mean | 1.600 | 0.111 |
Variance | 0.267 | 0.100 |
Observations | 10.000 | 63.000 |
p = 0.000 | ||
Profile 4: Speech Impairment | ||
Best Language | Profile 4 | Other Participants |
Mean | 1.333 | 0.075 |
Variance | 0.267 | 0.070 |
Observations | 6.000 | 67.000 |
p = 0.001 | ||
Dysarthria | ||
Mean | 1.000 | 0.313 |
Variance | 0.000 | 0.249 |
Observations | 6.000 | 67.000 |
p = 0.000 | ||
Profile 5: Visual Impairment | ||
Visual Field Test | Profile 5 | Other Participants |
Mean | 1.500 | 0.045 |
Variance | 0.300 | 0.074 |
Observations | 6.000 | 67.000 |
p = 0.000 |
Profile 1: Low Cognition | ||
Day 3–7 MOCA Score | Profile 1 | Other Participants |
Mean | 19.000 | 25.767 |
Variance | 13.500 | 8.250 |
Observations | 13 (17.8%) | 60 (82.2%) |
p = 0.0000 | ||
Profile 2: Higher Depression Level | ||
Day 3–7 MADRS Score | Profile 2 | Other Participants |
Mean | 16.500 | 3.238 |
Variance | 9.833 | 9.217 |
Observations | 13 (17.8%) | 60 (82.2%) |
p = 0.0000 |
Profile 1: Higher Depression Level | ||
MADRS | Profile 1 | Other Participants |
Mean | 12.714 | 5.469 |
Variance | 49.238 | 48.855 |
Observations | 7 (9.6%) | 66 (90.4%) |
p = 0.017 | ||
Profile 2: Increased Disability and Poor Quality of Life | ||
mRS | Profile 2 | Other Participants |
Mean | 1.667 | 0.859 |
Variance | 0.500 | 0.535 |
Observations | 9 (12.3%) | 64 (87.7%) |
p = 0.004 | ||
SIS | Profile 2 | Other Participants |
Mean | 68.444 | 84.328 |
Variance | 289.528 | 266.414 |
Observations | 9 (12.3%) | 64 (87.7%) |
p = 0.012 | ||
Profile 3: Low Work and Social Adjustment | ||
WSAS | Profile 3 | Other Participants |
Mean | 15.150 | 3.794 |
Variance | 88.781 | 32.183 |
Observations | 10 (13.7%) | 63 (86.3%) |
p = 0.002 |
Profile 1: Low Cognition and Low Physical Abilities | ||
MoCA | Profile 1 | Other Participants |
Mean | 21.125 | 26.585 |
Variance | 18.125 | 9.809 |
Observations | 8 (11%) | 65 (89%) |
p = 0.003 | ||
RAPA | Profile 1 | Other Participants |
Mean | 2.625 | 4.200 |
Variance | 3.411 | 3.819 |
Observations | 8 (11%) | 65 (89%) |
p = 0.025 | ||
Profile 2: Higher Level of Depression | ||
MADRS | Profile 2 | Other Participants |
Mean | 9.714 | 4.879 |
Variance | 30.238 | 39.770 |
Observations | 7 (9.6%) | 66 (90.4%) |
p = 0.030 | ||
Profile 3: Increased Disability | ||
mRS | Profile 3 | Other Participants |
Mean | 1.500 | 0.754 |
Variance | 0.571 | 0.657 |
Observations | 8 (11%) | 65 (89%) |
p = 0.014 | ||
Profile 4: Poor Quality Of Life | ||
SIS | Profile 4 | Other Participants |
Mean | 70.556 | 87.672 |
Variance | 190.278 | 169.113 |
Observations | 9 (12.3%) | 64 (87.7%) |
p = 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adikari, A.; Nawaratne, R.; De Silva, D.; Carey, D.L.; Walsh, A.; Baum, C.; Davis, S.; Donnan, G.A.; Alahakoon, D.; Carey, L.M. Is Mild Really Mild?: Generating Longitudinal Profiles of Stroke Survivor Impairment and Impact Using Unsupervised Machine Learning. Appl. Sci. 2024, 14, 6800. https://doi.org/10.3390/app14156800
Adikari A, Nawaratne R, De Silva D, Carey DL, Walsh A, Baum C, Davis S, Donnan GA, Alahakoon D, Carey LM. Is Mild Really Mild?: Generating Longitudinal Profiles of Stroke Survivor Impairment and Impact Using Unsupervised Machine Learning. Applied Sciences. 2024; 14(15):6800. https://doi.org/10.3390/app14156800
Chicago/Turabian StyleAdikari, Achini, Rashmika Nawaratne, Daswin De Silva, David L. Carey, Alistair Walsh, Carolyn Baum, Stephen Davis, Geoffrey A. Donnan, Damminda Alahakoon, and Leeanne M. Carey. 2024. "Is Mild Really Mild?: Generating Longitudinal Profiles of Stroke Survivor Impairment and Impact Using Unsupervised Machine Learning" Applied Sciences 14, no. 15: 6800. https://doi.org/10.3390/app14156800
APA StyleAdikari, A., Nawaratne, R., De Silva, D., Carey, D. L., Walsh, A., Baum, C., Davis, S., Donnan, G. A., Alahakoon, D., & Carey, L. M. (2024). Is Mild Really Mild?: Generating Longitudinal Profiles of Stroke Survivor Impairment and Impact Using Unsupervised Machine Learning. Applied Sciences, 14(15), 6800. https://doi.org/10.3390/app14156800