Enhanced Detection of Foreign Objects on Molybdenum Conveyor Belt Based on Anchor-Free Image Recognition
Abstract
:1. Introduction
2. Methods of Research
2.1. Basic Process of Foreign Body Detection
2.2. Improvements of the Approach
- Center-Net Object Detection Algorithm
- 2.
- Hourglass-104 Network Architecture
- 3.
- Expansion of the receptive field
- 4.
- Design of Loss Function
2.3. Preprocessing of Experimental Data
- Sample dataset enhancements
- Histogram equalization
- Noise reduction
- 2.
- Annotated datasets
3. Results
3.1. Test Environment Configuration
3.2. Target Set Training
3.3. Results of Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chandra, M.A.; Bedi, S.S. Survey on SVM and their application in image classification. Int. J. Inf. Technol. 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Fernando, B.; Fromont, E.; Tuytelaars, T. Mining mid-level features for image classification. Int. J. Comput. Vis. 2014, 108, 186–203. [Google Scholar] [CrossRef]
- Obaid, K.B.; Zeebaree, S.; Ahmed, O.M. Deep learning models based on image classification: A review. Int. J. Sci. Bus. 2020, 4, 75–81. [Google Scholar]
- Jena, B.; Nayak, G.K.; Saxena, S. Convolutional neural network and its pretrained models for image classification and object detection: A survey. Concurr. Comput. Pract. Exp. 2022, 34, e6767. [Google Scholar] [CrossRef]
- Fan, Q.; Zhuo, W.; Tang, C.-K.; Tai, Y.-W. Few-shot object detection with attention-RPN and multi-relation detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Jesse, K.; Changying, L. A pulsed thermographic imaging system for detection and identification of cotton foreign matter. Sensors 2017, 17, 518. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Zhan, W.; Sun, C.; Wang, M.; She, J.; Zhang, Y.; Zhang, Z.; Sun, Y. An improved yolov5 real-time detection method for small objects captured by uav. Soft Comput. 2022, 26, 361–373. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, W.; Gu, X.; Li, S.; Wang, L.; Zhang, T. Application of combining yolo models and 3d gpr images in road detection and maintenance. Remote Sens. 2021, 6, 1081. [Google Scholar] [CrossRef]
- Santos, P.M.; Simeone, M.; Pimentel, M.; Sena, M.M. Non-destructive screening method for detecting the presence of insects in sorghum grains using near infrared spectroscopy and discriminant analysis. Microchem. J. 2019, 149, 104057–104071. [Google Scholar] [CrossRef]
- Jiang, Y.; Ge, H.; Zhang, Y. Detection of foreign bodies in grain with terahertz reflection imaging. Opt.—Int. J. Light Electron Optics. 2018, 181, 1130–1138. [Google Scholar] [CrossRef]
- Taufiq, M.K.M.; Sallehuddin, I.; Amri, M.Y.M.; Mahdi, F. Noninvasive techniques for detection of foreign bodies in food: A review. J. Food Process Eng. 2018, 41, e12808. [Google Scholar]
- Mustafic, A.; Jiang, Y.; Li, C.Y. Cotton contamination detection and classification using hyperspectral fluorescence imaging. Text. Res. J. 2016, 86, 1574–1584. [Google Scholar] [CrossRef]
- Li, J.; Yang, L.; He, Y.; Li, W.; Wu, C. Terahertz nondestructive testing method of oil-paper insulation debonding and foreign matter defects. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1901–1908. [Google Scholar] [CrossRef]
- Li, D.; Wang, R.; Xie, C.; Liu, L.; Liu, W. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network. Sensors 2020, 20, 578. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Jiao, L.; Xie, C.; Chen, P.; Du, J.; Li, R. S-rpn: Sampling-balanced region proposal network for small crop pest detection. Comput. Electron. Agric. 2021, 187, 106290–106299. [Google Scholar] [CrossRef]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: A simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1922–1933. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Luo, B.; Kou, Z.; Han, C.; Wu, J.; Liu, S. A Faster and Lighter Detection Method for Foreign Objects in Coal Mine Belt Conveyors. Sensors 2023, 23, 6276. [Google Scholar] [CrossRef]
- Bewley, A.; Upcroft, B. Background Appearance Modeling with Applications to Visual Object Detection in an Open-Pit Mine. J. Field Robot. 2017, 34, 53–73. [Google Scholar] [CrossRef]
- Tanaka, S.; Ohtani, T.; Narita, Y.; Hatsukade, Y.; Suzuki, S. Development of metallic contaminant detection system using rf high-tc squids for food inspection. IEEE Trans. Appl. Supercond. 2015, 25, 1601004. [Google Scholar] [CrossRef]
- Tanaka, S.; Narita, Y.; Ohtani, T.; Ariyoshi, S.; Suzuki, S. Development of metallic contaminant detection system using rf high-tc squid with cu pickup coil. IEEE Trans. Appl. Supercond. 2016, 12, 600304. [Google Scholar] [CrossRef]
- Tanaka, S.; Ohtani, T.; Uchida, Y.; Hatsukade, Y.; Suzuki, S. Contaminant detection system using high tc squid for inspection of lithium ion battery cathode sheet. IEICE Trans. Electron. 2015, 98, 174–177. [Google Scholar] [CrossRef]
- Tanaka, S.; Ohtani, T.; Krause, H.J. Prototype of multi-channel high-tc squid metallic contaminant detector for large sized packaged food. IEICE Trans. Electron. 2017, E98.C, 269–273. [Google Scholar] [CrossRef]
- Du, S.; Xing, J.; Li, J.; Zhang, C. Open-pit mine extraction from very high-resolution remote sensing images using OM-DeepLab. Nat. Resour. Res. 2022, 31, 3173–3194. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Y.; Shangguan, H.; Zhang, P.; Wang, A. Detection of surface defects on solar cells by fusing multi-channel convolution neural networks. Infrared Phys. Technol. 2020, 108, 10333–103344. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Zhu, J.; Zhang, W.; Bi, L. Mine image enhancement using adaptive bilateral gamma adjustment and double plateaus histogram equalization. Multimed. Tools Appl. 2022, 81, 12643–12660. [Google Scholar] [CrossRef]
- Bora, D.J.; Gupta, A.K. A new efficient color image segmentation approach based on combination of histogram equalization with watershed algorithm. Int. J. Comput. Sci. Eng. 2016, 4, 156–167. [Google Scholar]
- Zhao, Y. Multi-level denoising and enhancement method based on wavelet transform for mine monitoring. Int. J. Min. Sci. Technol. 2013, 23, 163–166. [Google Scholar]
Model | AP | MAP | Inference Speed | ||
---|---|---|---|---|---|
Rill Root | Shovel Teeth | I-Beam | |||
SSD | 0.652 | 0.801 | 0.750 | 0.734 | 21.05 FPS |
YOLO V3 | 0.562 | 0.780 | 0.722 | 0.688 | 22.02 FPS |
Faster R-CNN | 0.722 | 0.780 | 0.802 | 0.774 | 20.08 FPS |
Center-net | 0.750 | 0.780 | 0.953 | 0.828 | 26.08 FPS |
Our method | 0.822 | 0.941 | 0.963 | 0.909 | 26.05 FPS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Lu, C.; Yan, X.; He, R.; Zhao, X. Enhanced Detection of Foreign Objects on Molybdenum Conveyor Belt Based on Anchor-Free Image Recognition. Appl. Sci. 2024, 14, 7061. https://doi.org/10.3390/app14167061
Li M, Lu C, Yan X, He R, Zhao X. Enhanced Detection of Foreign Objects on Molybdenum Conveyor Belt Based on Anchor-Free Image Recognition. Applied Sciences. 2024; 14(16):7061. https://doi.org/10.3390/app14167061
Chicago/Turabian StyleLi, Meng, Caiwu Lu, Xuesong Yan, Runfeng He, and Xuyang Zhao. 2024. "Enhanced Detection of Foreign Objects on Molybdenum Conveyor Belt Based on Anchor-Free Image Recognition" Applied Sciences 14, no. 16: 7061. https://doi.org/10.3390/app14167061
APA StyleLi, M., Lu, C., Yan, X., He, R., & Zhao, X. (2024). Enhanced Detection of Foreign Objects on Molybdenum Conveyor Belt Based on Anchor-Free Image Recognition. Applied Sciences, 14(16), 7061. https://doi.org/10.3390/app14167061