Research Prospects for the Optimization of Magneto-Optical Trap Parameters for Cold Atom Interferometers
Abstract
:1. Introduction
2. Analysis of the Working Principle of MOTs
2.1. Basic Structure
2.2. Action Mechanism
2.3. Atomic Force and Motion Analysis
3. The Main Parameters and Indices of MOT
3.1. Control Parameters
3.2. Conventional Performance Indices
3.2.1. The Atomic Number
3.2.2. Atomic Density
3.2.3. Atomic Temperature
3.2.4. Atomic Lifetime
3.3. Application Requirement Analysis
3.3.1. Miniaturization
3.3.2. Reduce Measurement Noise
3.3.3. Increasing the Measurement Bandwidth
3.4. Application Performance Indices
3.4.1. Volume
3.4.2. Resonant Frequency
3.4.3. Atomic Loading Time
4. Prospects for Research on the Optimization of MOT Parameters
4.1. Research Progress
4.2. Several Key Technologies
4.3. Some Suggestions for Parameter Optimization Research
5. Summary and Prospects
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Höschele, J.; Buob, S.; Rubio-Abadal, A.; Makhalov, V.; Tarruell, L. Atom-number enhancement by shielding atoms from losses in strontium magneto-optical traps. Phys. Rev. Appl. 2023, 19, 064011. [Google Scholar] [CrossRef]
- Lett, P.D.; Watts, R.N.; Westbrook, C.I.; Phillips, W.D.; Gould, P.L.; Metcalf, H.J. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 1988, 61, 169. [Google Scholar] [CrossRef] [PubMed]
- Ali, D.B.; Badr, T.; Brézillon, T.; Dubessy, R.; Perrin, H.; Perrin, A.J. Detailed study of a transverse field Zeeman slower. Phys. B At. Mol. Opt. Phys. 2017, 50, 055008. [Google Scholar] [CrossRef]
- Tarbutt, M.R.; Steimle, T.C. Modeling magneto-optical trapping of CaF molecules. Phys. Rev. A 2015, 92, 053401. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Sun, W.J.; Dong, M.; Wu, H.B.; Li, R.; Zhang, X.J.; Zhang, J.Y.; Cheng, Y.J. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Phys. Sin. 2022, 71, 145–152. [Google Scholar]
- Lü, D.S.; Ren, W.; Sun, Y.; Li, T.; Qu, Q.Z.; Wang, B.; Li, L.; Zhao, J.B.; Zhao, X.; Ji, J.W.; et al. Characterization of Laser Cooling in Orbital Microgravity via Long-term Operations in a Space Lab. Natl. Sci. Rev. 2023, 10, nwac180. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Liu, B.; Diao, W.T.; Jin, G.; He, J.; Wang, J.M. Optimization of the light-induced-fluorescence signals of single atoms and efficient loading of single atoms into a magneto-optical trap. Acta Phys. Sin. 2014, 63, 138–142. [Google Scholar]
- Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 1995, 269, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Wineland, D.J.; Itano, W.M. Laser cooling of atoms. Phys. Rev. A 1979, 20, 1521. [Google Scholar] [CrossRef]
- Cataliotti, F.S.; Burger, S.; Fort, C.; Maddaloni, P.; Minardi, F.; Trombettoni, A.; Smerzi, A.; Inguscio, M. Josephson junction arrays with Bose-Einstein condensates. Science 2001, 293, 843–846. [Google Scholar] [CrossRef]
- Wu, X.; Pagel, Z.; Malek, B.S.; Nguyen, T.H.; Zi, F.; Scheirer, D.S.; Müller, H. Gravity surveys using a mobile atom interferometer. Sci. Adv. 2019, 5, eaax0800. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Pan, X.Q.; Zhou, Q.; Lu, J.F. A Combinative Double-Well Optical Trap for Two-Species Cold Atoms. Jiangxi Sci. 2011, 29, 694–697+728. [Google Scholar]
- Huang, X.M.; Liu, X.L. The Field Structures of Some Typical Magnetostatic Traps. J. Xiangtan Univ. (Nat. Sci. Ed.) 2006, 28, 58–63. [Google Scholar]
- Wang, Y.Q. Laser Cooling and Trapping of Atoms; Science Press: Beijing, China, 2007. [Google Scholar]
- Gaudesius, M.; Zhang, Y.C.; Pohl, T.; Kaiser, R.; Labeyrie, G. Three-dimensional simulations of spatiotemporal instabilities in a magneto-optical trap. Phys. Rev. A 2022, 105, 013112. [Google Scholar] [CrossRef]
- Raab, E.L.; Prentiss, M.; Cable, A.; Chu, S.; Pritchard, D.E. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett. 1987, 59, 2631. [Google Scholar] [CrossRef]
- Chu, S. The manipulation of neutral particles. Rev. Mod. Phys. 1998, 70, 685. [Google Scholar] [CrossRef]
- Monroe, C.; Swann, W.; Robinson, H.; Wieman, C. Very cold trapped atoms in a vapor cell. Phys. Rev. Lett. 1990, 65, 1571. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J. Experimental study of Zeeman light shifts in weak magnetic fields. Phys. Rev. A 1972, 5, 968. [Google Scholar] [CrossRef]
- Xu, S.; Li, R.; Zhai, Y.; Xia, Y.; Siercke, M.; Ospelkaus, S. Blue-detuned molecular magneto-optical trap schemes based on bayesian optimization. Phys. Rev. A 2023, 108, 033102. [Google Scholar] [CrossRef]
- Burau, J.J.; Aggarwal, P.; Mehling, K.; Ye, J. Blue-Detuned Magneto-Optical Trap of Molecules. Phys. Rev. Lett. 2023, 130, 193401. [Google Scholar] [CrossRef]
- Shimizu, F.; Shimizu, K.; Takuma, H. Four-beam laser trap of neutral atoms. Opt. Lett. 1991, 16, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.S.; Norrgard, E.B.; Klimov, N.N.; Fedchak, J.A.; Scherschligt, J.; Eckel, S. Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating. Phys. Rev. Appl. 2019, 11, 064023. [Google Scholar] [CrossRef] [PubMed]
- Hyodo, M.; Nakayama, K.; Watanabe, M.; Ohmukai, R. Mirror magneto-optical trap exploiting hexapole-compensated magnetic field. Phys. Rev. A 2007, 76, 013419. [Google Scholar] [CrossRef]
- Xu, S.; Xia, M.; Gu, R.; Yin, Y.; Xu, L.; Xia, Y.; Yin, J. Three-dimensional modeling of magneto-optical trapping of MgF molecules with multilevel rate equations. Phys. Rev. A 2019, 99, 033408. [Google Scholar] [CrossRef]
- Williams, H.J.; Truppe, S.; Hambach, M.; Caldwell, L.; Fitch, N.J.; Hinds, E.A.; Sauer, B.E.; Tarbutt, M.R. Characteristics of a magneto-optical trap of molecules. New J. Phys. 2017, 19, 113035. [Google Scholar] [CrossRef]
- Walker, T.; Feng, P.; Hoffmann, D.; Williamson, R.S. Spin-polarized spontaneous-force atom trap. Phys. Rev. Lett. 1992, 69, 2168. [Google Scholar] [CrossRef]
- Ketterle, W.; Davis, K.B.; Joffe, A.; Martin, A.; Pritchard, D.E. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 1993, 70, 2253. [Google Scholar] [CrossRef]
- Ménoret, V.; Vermeulen, P.; Le Moigne, N.; Bonvalot, S.; Bouyer, P.; Landragin, A.; Desruelle, B. Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Sci Rep. 2018, 8, 12300. [Google Scholar] [CrossRef]
- Wu, X.; Weiner, S.; Pagel, Z.; Malek, B.S.; Muller, H. Mobile Quantum Gravimeter with a Novel Pyramidal Magneto-Optical Trap. In CLEO: QELS_Fundamental Science; JW2C.5; Optica Publishing Group: Washington, DC, USA, 2020. [Google Scholar]
- Wu, C.J.; Ruan, J.; Chen, J.; Zhang, H.; Zhang, S.G. A two-dimensional magneto-optical trap for a cesium fountain clock. Acta Phys. Sin. 2013, 62, 128–132. [Google Scholar]
- Ruan, J.; Wu, C.J.; Liu, D.D.; Ma, J.; Zhang, S.G. Numerical simulation of generation of the Cs atom beam by two-dimensional magneto-optical trap. J. At. Mol. Phys. 2012, 29, 783–788. [Google Scholar]
- Barbiero, M.; Tarallo, M.G.; Calonico, D.; Levi, F.; Lamporesi, G.; Ferrari, G. Sideband-Enhanced Cold Atomic Source for Optical Clocks. Phys. Rev. Appl. 2020, 13, 014013. [Google Scholar] [CrossRef]
- Jongmin, L.; Roger, D.; Justin, C.; Randy, R.R.; Aaron, I.; Daniel, P.G.; David, B.; Kyle, H.F.; William, K.; Patrick, S.F.; et al. A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system. Nat. Commun. 2022, 13, 5131. [Google Scholar]
- Lee, J.; Grover, J.A.; Orozco, L.A.; Rolston, S.L. Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap. JOSA B 2013, 30, 2869–2874. [Google Scholar] [CrossRef]
- Gou, W.; Liu, K.K.; Fu, X.H.; Zhao, R.C.; Sun, J.F.; Xu, Z. Optimization of the loading rate of magneto-optical trap for neutral mercury atom. Acta Phys. Sin. 2016, 65, 7–13. [Google Scholar] [CrossRef]
- Louchet-Chauvet, A.; Farah, T.; Bodart, Q.; Clairon, A.; Landragin, A.; Merlet, S.; Dos Santos, F.P. The influence of transverse motion within an atomic gravimeter. New J. Phys. 2011, 13, 065025. [Google Scholar] [CrossRef]
- Li, R.B.; Yao, Z.W.; Lu, S.B.; Jiang, M.; Li, S.K.; Wang, J.; Zhan, M.S. Precision Measurement and Applieations with Atom Interference Gyroscopes. Navig. Position. Timing 2021, 8, 8–17. [Google Scholar]
- Gaudesius, M. Self-Oscillating Clouds in Magneto-Optical Traps. Ph.D. Thesis, Université Côte d’Azur, Nice, France, 2021. [Google Scholar]
- Krzysztof, K.; Xuan, K.D.; Małgorzata, G.; Huy, B.N.; Jerzy, S. Magneto-optical trap: Fundamentals and realization. CMST 2010, 2, 115–129. [Google Scholar] [CrossRef]
- Tarbutt, M.R. Magneto-optical trapping forces for atoms and molecules with complex level structures. New J. Phys. 2015, 17, 015007. [Google Scholar] [CrossRef]
- Jarvis, K.N.; Sauer, B.E.; Tarbutt, M.R. Characteristics of unconventional Rb magneto-optical traps. Phys. Rev. A 2018, 98, 043432. [Google Scholar] [CrossRef]
- Baum, L.; Vilas, N.B.; Hallas, C.; Augenbraun, B.L.; Raval, S.; Mitra, D.; Doyle, J.M. 1D Magneto-Optical Trap of Polyatomic Molecules. Phys. Rev. Lett. 2020, 124, 133201. [Google Scholar] [CrossRef]
- Jarvis, K.N.; Devlin, J.A.; Wall, T.E.; Sauer, B.E.; Tarbutt, M.R. Blue-Detuned Magneto-Optical Trap. Phys. Rev. Lett. 2018, 120, 083201. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Chen, X.Z.; Wang, Q.J.; Wang, Y.Q. Motion of cesium atoms in the one-dimensional magneto-optical trap. Acta Phys. Sin. (Oversea Ed.) 1995, 4, 727. [Google Scholar]
- Brzozowski, T.M.; Maczynska, M.; Zawada, M.; Zachorowski, J.; Gawlik, W. Time-of-flight measurement of the temperature of cold atoms for short trap–probe beam distances. J. Opt. B Quantum Semiclassical Opt. 2002, 4, 62. [Google Scholar] [CrossRef]
- Vovrosh, J.; Wilkinson, K.; Hedges, S.; McGovern, K.; Hayati, F.; Carson, C.; Selyem, A.; Winch, J.; Stray, B.; Earl, L.; et al. Magneto-optical trapping in a near-suface borehole. PLoS ONE 2023, 18, e0288353. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Sun, Z.M.; Jia, X.L.; Song, X.Y.; Jiang, Q.X. Analyzing the current situation of quantum navigation technology system. GNSS World China 2023, 48, 19–23. [Google Scholar]
- Wang, T.; Lu, X.T.; Zhang, X.F. Research Advances in Optical Lattice Atomic Clocks. Low Temp. Phys. Lett. 2022, 44, 385–395. [Google Scholar]
- Chen, X.Z.; He, X.; Yuan, Z.C.; Xie, W.B.; Chen, N.; Xiong, Z.Z.; Fang, S.W.; Wang, Q.; Qi, X.H. Development of compact optically pumped hot and cold cesium beam atomic clocks in Peking University. J. Time Freq. 2022, 45, 104–109. [Google Scholar]
- Ren, L.C.; Zhou, L.; Li, R.B.; Liu, M.; Wang, J.; Zhan, M.S. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Phys. Sin. 2009, 58, 8230–8235. [Google Scholar]
- Deng, X.B.; Xu, W.J.; Cheng, Y.; Zhang, J.Y.; Hu, Z.K.; Zhou, M.K. Miniaturized Atom Gravimeter and Its Application. Navig. Control 2022, 21, 66–79. [Google Scholar]
- Sugarbaker, A. Atom interferometry in a 10 m fountain. Ph.D. Thesis, Stanford University, San Francisco, CA, USA, 2014. [Google Scholar]
- Zhou, L.; Xiong, Z.Y.; Yang, W.; Tang, B.; Peng, W.C.; Hao, K.; Li, R.B.; Liu, M.; Wang, J.; Zhan, M.S. Development of an atom gravimeter and status of the 10-meter atominterferometer for precision gravity measurement. Gen. Relativ. Gravit. 2011, 43, 1931–1942. [Google Scholar]
- Fu, Z.; Wang, Q.; Wang, Z.; Wu, B.; Cheng, B.; Lin, Q. Participation in the absolute gravity comparison with a compact cold atom gravimeter. Chin. Opt. Lett. 2019, 17, 011204. [Google Scholar]
- Zhang, X.; Yan, S.H.; Zhu, L.X.; Jia, A.A.; Wang, Y.N.; Li, Q.X.; Zhang, H.K.; Yang, J. Research Status of Cold Atom Interferometric Quantum Sensors in Applications of Navigation. In Proceedings of the 10th Annual China Satellite Navigation Conference, Beijing, China, 22–25 May 2019. [Google Scholar]
- Le Targat, R.; Lorini, L.; Le Coq, Y.; Zawada, M.; Guéna, J.; Abgrall, M.; Gurov, M.; Rosenbusch, P.; Rovera, D.G.; Nagórny, B.; et al. Experimental realization of an optical second with strontium lattice clocks. Nat. Commun. 2013, 4, 2109. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.H.; Pan, D.; Chen, J.B. Research Progress of Chip-Scale Atomic Clocks. Vac. Electron. 2023, 1, 1–11. [Google Scholar] [CrossRef]
- Chen, H.H.; Yao, Z.W.; Lu, Z.X.; Mao, Y.F.; Li, R.B.; Wang, J.; Zhan, M.S. Transportable High-precision Atom-interferometer Gyroscope. Navig. Control 2022, 21, 42–50+9. [Google Scholar]
- Wang, W.; Wang, X.F.; Ma, J.L.; Yang, Y.B.; Chen, X.Z. Key Technolegy and Development of Atom Interferometric Gyroscope. Navig. Control 2011, 10, 55–60+46. [Google Scholar]
- Luo, M.R.; Li, S.L.; Huang, Y.M.; Zhang, C.; Wu, Z.C.; Liu, H. Review and Prospect of Atomic Gyroscope Development. Meas. Control Technol. 2023, 42, 1–10. [Google Scholar] [CrossRef]
- Wei, X.T. Summarize of Gravity Gradient Research Progress with Atom Interferometer. Opt. Optoelectron. Technol. 2017, 15, 99–104. [Google Scholar]
- Xu, W.H.; Lu, W.; Zhong, J.Q.; Wang, J.; Zhan, M.S. Development Status and Analysis of Gravity Gradiometer Based on Atom Interferometer. Navig. Control 2022, 21, 80–90+65. [Google Scholar]
- Tang, B.; Zhou, L.; Xiong, Z.Y.; Wang, J. A programmable broadband low frequency active vibration isolation system for atom interferometry. Rev. Sci. Instrum. 2014, 85, 093109. [Google Scholar] [CrossRef]
- Zhang, N.; Hu, Q.; Wang, Q.; Ji, Q.; Zhao, W.; Wei, R.; Wang, Y. Michelson laser interferometer-based vibration noise contribution measurement method for cold atom interferometry gravimeter. Chin. Phys. B 2020, 29, 070601. [Google Scholar] [CrossRef]
- Foster, G.T.; Fixler, J.B.; McGuirk, J.M.; Kasevich, M.A. Method of phase extraction between coupled atom interferometers using ellipse-specific fitting. Opt. Lett. 2002, 27, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.D.; Weng, K.X.; Wu, B.; Cheng, B.; Lin, Q. Research Progress of Quantum Gravity Gradiometer. Navig. Position. Timing 2021, 8, 18–29. [Google Scholar]
- Song, H.W. Development Status and Tendency of Cold-Atom Gravity Gradiometer. Opt. Optoelectron. Technol. 2023, 21, 1–14. [Google Scholar]
- Wang, A.Q.; Meng, Z.X.; Li, Y.Y.; Xue, H.B.; Feng, Y.Y. Research Progress in a Continuous Cold Atomic Beam Interferometer Gyroscope. Navig. Position. Timing 2017, 4, 77–84. [Google Scholar]
- Hu, Z.K.; Sun, B.L.; Duan, X.C.; Zhou, M.K.; Chen, L.L.; Zhan, S.; Zhang, Q.Z.; Luo, J. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys. Rev. A 2013, 88, 043610. [Google Scholar] [CrossRef]
- McGuinness, H.J.; Rakholia, A.V.; Biedermann, G.W. High data-rate atom interferometer for measuring acceleration. Appl. Phys. Lett. 2012, 100, 011106. [Google Scholar] [CrossRef]
- Liu, Y.X.; Kan, B.X.; Shi, M.; Wei, X.G.; Wang, X.F. Research progress of atomic gyroscope technology. In Proceedings of the 4th Aerospace Electronics Strategic Research Forum, Beijing, China, 15 June 2018. [Google Scholar]
- Fang, B.; Dutta, I.; Gillot, P.; Savoie, D.; Lautier, J.; Cheng, B.; Alzar, C.G.; Geiger, R.; Merlet, S.; Dos Santos, F.P.; et al. Metrology with Atom Interferometry: Inertial Sensors from Laboratory to Field Applications. Phys. Conf. Ser. 2016, 723, 012049. [Google Scholar] [CrossRef]
- Weng, K.X.; Wu, B.; Lin, J.H.; Zhou, Y.; Cheng, B.; Lin, Q. Compact magneto-optical trap with a quartz vacuum chamber for miniature gravimeters. JOSA B 2020, 37, 1637–1642. [Google Scholar] [CrossRef]
- Bharadwaj, K.; Sarkar, S.; Ram, S.P.; Tiwari, V.B.; Mishra, S.R. A compact setup for loading magneto-optical trap in ultrahigh vacuum environment. arXiv 2022, arXiv:2206.13271. [Google Scholar]
- McGehee, W.R.; Zhu, W.; Barker, D.S.; Westly, D.; Yulaev, A.; Klimov, N.; Agrawal, A.; Eckel, S.; Aksyuk, V.; McClelland, J.J. Magneto-optical trapping using planar optics. New J. Phys. 2021, 23, 013021. [Google Scholar] [CrossRef]
- Wu, X.; Zi, F.; Dudley, J.; Bilotta, R.J.; Canoza, P.; Müller, H. Multiaxis atom interferometry with a single diode laser and a pyramidal magneto-optical trap. Optica 2017, 4, 1545–1551. [Google Scholar] [CrossRef]
- Earl, L.; Vovrosh, J.; Wright, M.; Roberts, D.; Winch, J.; Perea-Ortiz, M.; Lamb, A.; Hayati, F.; Griffin, P.; Metje, N.; et al. Demonstration of a Compact Magneto-Optical Trap on an Unstaffed Aerial Vehicle. Atoms 2022, 10, 32. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.N.; Li, Q.X.; Zhu, L.X.; Sun, Y.; Jia, A.A.; Zhang, H.K.; Lv, M.J.; Yan, S.H.; Yang, J. Influence of cooling lights’ low-frequency pointing instability on the quality of magneto-optical trapping. J. Opt. Soc. Am. B 2019, 36, 3531–3537. [Google Scholar] [CrossRef]
- Jiang, K.J.; Li, K.; Wang, J.; Zhan, M.S. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Phys. Sin. 2006, 55, 125–129. [Google Scholar] [CrossRef]
- Wu, L.M. Optimization of magneto-optical trap parameters based on miniaturized ultra-high vacuum cavity. Master’s Dissertation, Zhejiang University of Technology, Hangzhou, China, 2020. [Google Scholar]
- Tranter, A.D.; Slatyer, H.J.; Hush, M.R.; Leung, A.C.; Everett, J.L.; Paul, K.V.; Vernaz-Gris, P.; Lam, P.K.; Buchler, B.C.; Campbell, G.T. Multiparameter optimisation of a magneto-optical trap using deep learning. Nat. Commun. 2018, 9, 4360. [Google Scholar] [CrossRef]
- Liu, Q.; Xie, Y.; Li, L.; Liang, A.A.; Li, W.W.; Chen, H.N.; Fang, S.; Qu, Q.Z.; Liu, L.; Wang, B.; et al. Multiparameter Autonomous Optimization System for Ultracold Atomic Experiments Based on Artificial Neural Network. Chin. J. Lasers 2021, 48, 182–189. [Google Scholar]
- Xu, S.; Kaebert, P.; Stepanova, M.; Poll, T.; Siercke, M.; Ospelkaus, S. Maximizing the capture velocity of molecular magneto-optical traps with Bayesian optimization. New J. Phys. 2021, 23, 063062. [Google Scholar] [CrossRef]
- Li, J.X.; Chen, H.J.; Feng, J.J.; Wu, Q.H. Numerical simulation and parameter optimization of novel atomic clock magneto-optical trap for offshore buoys. J. Shanghai Marit. Univ. 2023, 44, 24–29. [Google Scholar]
- Chen, L.; Duan, J.Y.; Yu, Z.L.; Guo, S.; Liu, X.C. Multi parameter autonomous optimization system of mgneto-optical trap based on Bayesian optimization. Navig. Position Timing 2023, 10, 29–38. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. Adv. Neural Inf. Process. Syst. 2012, 25, 1–9. [Google Scholar]
- Geisel, I.; Cordes, K.; Mahnke, J.; Jöllenbeck, S.; Ostermann, J.; Arlt, J.; Ertmer, W.; Klempt, C. Evolutionary optimization of an experimental apparatus. Appl. Phys. Lett. 2013, 102, 214105. [Google Scholar] [CrossRef]
- Eckel, S.; Barker, D.S.; Norrgard, E.B.; Scherschligt, J. PyLCP: A Python package for computing laser cooling physics. Comput. Phys. Commun. 2022, 270, 108166. [Google Scholar] [CrossRef] [PubMed]
- Hanley, R.K.; Huillery, P.; Keegan, N.C.; Bounds, A.D.; Boddy, D.; Faoro, R.; Jones, M.P. Quantitative simulation of a magneto-optical trap operating near the photon recoil limit. J. Mod. Opt. 2018, 65, 667–676. [Google Scholar] [CrossRef]
- Chen, X.; Zeuner, M.; Schneider, U.; Foot, C.J.; Harte, T.L.; Bentine, E. AtomECS: Simulate laser cooling and magneto-optical traps. arXiv 2021, arXiv:2105.06447. [Google Scholar]
Serial Number | Control Parameter Name | Unit |
---|---|---|
1 | Cooling laser detuning | MHz |
2 | Cooling laser intensity | mW/cm2 |
3 | Cooling laser radius | m |
4 | Cooling laser polarization | — |
5 | Magnetic field gradient | G/cm |
6 | Repumping laser intensity | mW/cm2 |
7 | Repumping laser detuning | MHz |
8 | Compensated field gradient | G/cm |
Serial Number | Performance Indicator Name | Unit |
---|---|---|
1 | Atomic number | - |
2 | Atomic density | - |
3 | Atomic temperature | K |
4 | Atomic lifetime | s |
5 | Volume | m3 |
6 | Resonant frequency | Hz |
7 | Atomic loading time | s |
Years | Research Team Member | Working Model | Optimization Method | Performance Index |
---|---|---|---|---|
2006 | Jiang Kaijun | Real system, two-level model | Control variable method | Atomic number |
2016 | Gou Wei | Random number method simulation based on motion equation | Control variable method | Atomic number |
2017–2019 | Wu Liming | Actual system | Control variable method | Atomic number |
2018 | A.D. Tranter | Actual system | Artificial neural network | Optical density |
2021 | Liu Qian | Monte Carlo simulation based on motion equation | Artificial neural network | Atomic number |
2021 | S Xu | Rate equation model | Bayesian optimization | Trapping rate |
2023 | Li Jiaxin | Monte Carlo simulation based on motion equation | Control variable method | Atomic beam flux |
2023 | Chen Lang | Actual system | Bayesian optimization | Atomic group fluorescence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Qin, F.; Xu, R.; Li, A. Research Prospects for the Optimization of Magneto-Optical Trap Parameters for Cold Atom Interferometers. Appl. Sci. 2024, 14, 7062. https://doi.org/10.3390/app14167062
Li D, Qin F, Xu R, Li A. Research Prospects for the Optimization of Magneto-Optical Trap Parameters for Cold Atom Interferometers. Applied Sciences. 2024; 14(16):7062. https://doi.org/10.3390/app14167062
Chicago/Turabian StyleLi, Dongyi, Fangjun Qin, Rui Xu, and An Li. 2024. "Research Prospects for the Optimization of Magneto-Optical Trap Parameters for Cold Atom Interferometers" Applied Sciences 14, no. 16: 7062. https://doi.org/10.3390/app14167062
APA StyleLi, D., Qin, F., Xu, R., & Li, A. (2024). Research Prospects for the Optimization of Magneto-Optical Trap Parameters for Cold Atom Interferometers. Applied Sciences, 14(16), 7062. https://doi.org/10.3390/app14167062