A Human Body Simulation Using Semantic Segmentation and Image-Based Reconstruction Techniques for Personalized Healthcare
Abstract
:1. Introduction
2. Three-Dimensional Modeling of the Human Body
3. Human Body Simulation Using Semantic Segmentation and Image-Based Reconstruction Techniques
3.1. Anthropometric Measurement
3.2. Model Selection
3.3. Prediction Adjustment
3.4. Data Collection
3.4.1. Anthropometry
3.4.2. Exercise Plan
4. Experiments
4.1. Scenario
4.2. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chawla, N.V.; Davis, D.A. Bringing big data to personalized healthcare: A patient-centered framework. J. Gen. Intern. Med. 2013, 28, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Perez, J.; Leff, D.R.; Ip HM, D.; Yang, G.-Z. From wearable sensors to smart implants—Toward pervasive and personalized healthcare. IEEE Trans. Biomed. Eng. 2015, 62, 2750–2762. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, D.; Kadokura, E.A.; Bouldin, E.D.; Miyawaki, C.E.; Higano, C.S.; Hartzler, A.L. Acceptability of Fitbit for physical activity tracking within clinical care among men with prostate cancer. AMIA Annu. Symp. Proc. 2016, 2016, 1050. [Google Scholar] [PubMed]
- Turakhia, M.P.; Desai, M.; Hedlin, H.; Rajmane, A.; Talati, N.; Ferris, T.; Desai, S.; Nag, D.; Patel, M.; Kowey, P. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am. Heart J. 2019, 207, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, K.D.; Poole, L.R.; Mullan, A.F.; Kopecky, S.L.; Heaton, H.A. Clinical evaluation and diagnostic yield following evaluation of abnormal pulse detected using Apple Watch. J. Am. Med. Inform. Assoc. 2020, 27, 1359–1363. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.; White PC, L. Social determinants and lifestyles: Integrating environmental and public health perspectives. Public Health 2016, 141, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.W.; Horrace, W.C.; Vogel, R.J. The determinants of life expectancy: An analysis of the OECD health data. South. Econ. J. 2005, 71, 768–783. [Google Scholar]
- Atiq, M.K.; Mehmood, K.; Niaz, M.T.; Kim, H.S. Energy-aware optimal slot allocation scheme for wearable sensors in first responder monitoring system. Int. J. Ad Hoc Ubiquitous Comput. 2019, 31, 103–111. [Google Scholar] [CrossRef]
- ISO/IEEE 11073-20601:2016; Health informatics—Personal Health Device communication—Part 20601: Application Profile—Optimized Exchange Protocolexchange Protocol. ISO: Geneva, Switzerland, 2010.
- Anliker, U.; Ward, J.A.; Lukowicz, P.; Troster, G.; Dolveck, F.; Baer, M.; Keita, F.; Schenker, E.B.; Catarsi, F.; Coluccini, L.; et al. AMON: A wearable multiparameter medical monitoring and alert system. IEEE Trans. Inf. Technol. Biomed. 2004, 8, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Gozani, S.N. Science Behind QuellTM Wearable Pain Relief Technology for Treatment of Chronic Pain. NeuroMetrix, Inc. 2015. Available online: https://pdfs.semanticscholar.org/1be4/fe3ce9f3d0bb81a55f67bee1859c71fb36f9.pdf (accessed on 5 March 2024).
- Diener, H.C.; Ashina, M.; Durand-Zaleski, I.; Kurth, T.; Lantéri-Minet, M.; Lipton, R.B.; Ollendorf, D.A.; Pozo-Rosich, P.; Tassorelli, C.; Terwindt, G. Health technology assessment for the acute and preventive treatment of migraine: A position statement of the International Headache Society. Cephalalgia 2021, 41, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Walters, M.E.; Dijkstra, A.; de Winter, A.F.; Reijneveld, S.A. Development of a training programme for home health care workers to promote preventive activities focused on a healthy lifestyle: An intervention mapping approach. BMC Health Serv. Res. 2015, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Panyod, S.; Ho, C.-T.; Sheen, L.-Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med. 2020, 10, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Fortune Business Insights. Home Fitness Equipment Market Size, Share & COVID-19 Impact Analysis, by Type (Cardiovascular Training Equipment and Strength Training Equipment), and Sales Channel (Online and Offline), and Regional Forecast, 2021–2028. Fortune Business Insight, Inc. 2021. Available online: https://www.fortunebusinessinsights.com/home-fitness-equipment-market-105118 (accessed on 13 April 2024).
- Diel, R.; Lampenius, N.; Nienhaus, A. Cost effectiveness of preventive treatment for tuberculosis in special high-risk populations. Pharmacoeconomics 2015, 33, 783–809. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.C.; Parale, G.P.; Kulkarni, P.M.; Patil, H.V. Relation of anthropometric variables to coronary artery disease risk factors. Indian J. Endocrinol. Metab. 2011, 15, 31. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.M.; Cho, I.-J.; Sung, D.; Kim, S.; Kim, H.C.; Chae, M.-H.; Kavousi, M.; Rueda-Ochoa, O.L.; Ikram, M.A.; Franco, O.H. Development and verification of prediction models for preventing cardiovascular diseases. PLoS ONE 2019, 14, e0222809. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Coupland, C.; Vinogradova, Y.; Robson, J.; May, M.; Brindle, P. Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: Prospective open cohort study. BMJ 2007, 335, 136. [Google Scholar] [CrossRef] [PubMed]
- Brundage, M.; Avin, S.; Clark, J.; Toner, H.; Eckersley, P.; Garfinkel, B.; Dafoe, A.; Scharre, P.; Zeitzoff, T.; Filar, B. The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv 2018, arXiv:1802.07228. [Google Scholar]
- Chang, X.; Yi, W.; Lin, X.; Sun, Y. 3D hand reconstruction with both shape and appearance from an RGB image. Image Vis. Comput. 2023, 135, 104690. [Google Scholar] [CrossRef]
- Tan, J.; Wang, K.; Chen, L.; Zhang, G.; Li, J.; Zhang, X. HCFS3D: Hierarchical coupled feature selection network for 3D semantic and instance segmentation. Image Vis. Comput. 2021, 109, 104129. [Google Scholar] [CrossRef]
- Leibe, B.; Ettlin, A.; Schiele, B. Learning semantic object parts for object categorization. Image Vis. Comput. 2008, 26, 15–26. [Google Scholar] [CrossRef]
- Ohashi, T.; Ikegami, Y.; Nakamura, Y. Synergetic reconstruction from 2D pose and 3D motion for wide-space multi-person video motion capture in the wild. Image Vis. Comput. 2020, 104, 104028. [Google Scholar] [CrossRef]
- Bowden, R.; Mitchell, T.A.; Sarhadi, M. Non-linear statistical models for the 3D reconstruction of human pose and motion from monocular image sequences. Image Vis. Comput. 2000, 18, 729–737. [Google Scholar] [CrossRef]
- Baek, S.-Y.; Lee, K. Parametric human body shape modeling framework for human-centered product design. Comput. -Aided Des. 2012, 44, 56–67. [Google Scholar] [CrossRef]
- Kang, T.J.; Kim, S.M. Optimized garment pattern generation based on three-dimensional anthropometric measurement. Int. J. Cloth. Sci. Technol. 2000, 12, 240–254. [Google Scholar] [CrossRef]
- Paquette, S. 3D scanning in apparel design and human engineering. IEEE Comput. Graph. Appl. 1996, 16, 11–15. [Google Scholar] [CrossRef]
- Mada, S.K.; Smith, M.L.; Smith, L.N.; Midha, P.S. Overview of passive and active vision techniques for hand-held 3D data acquisition. Opto-Irel. 2002: Opt. Metrol. Imaging Mach. Vis. 2003, 4877, 16–27. [Google Scholar]
- Kasap, M.; Magnenat-Thalmann, N. Parameterized human body model for real-time applications. In Proceedings of the 2007 International Conference on Cyberworlds (CW’07), Hannover, Germany, 24–26 October 2007; pp. 160–167. [Google Scholar]
- Malagon-Borja, L.; Fuentes, O. Object detection using image reconstruction with PCA. Image Vis. Comput. 2009, 27, 2–9. [Google Scholar] [CrossRef]
- Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers, J.; Davis, J. Scape: Shape completion and animation of people. In ACM SIGGRAPH 2005 Papers; Stanford University: Stanford, CA, USA, 2005; pp. 408–416. [Google Scholar]
- Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M.J. SMPL: A skinned multi-person linear model. ACM Trans. Graph. (TOG) 2015, 34, 1–16. [Google Scholar] [CrossRef]
- Pishchulin, L.; Insafutdinov, E.; Tang, S.; Andres, B.; Andriluka, M.; Gehler, P.V.; Schiele, B. Deepcut: Joint subset partition and labeling for multi person pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4929–4937. [Google Scholar]
- Bogo, F.; Kanazawa, A.; Lassner, C.; Gehler, P.; Romero, J.; Black, M.J. Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 561–578. [Google Scholar]
- Lassner, C.; Romero, J.; Kiefel, M.; Bogo, F.; Black, M.J.; Gehler, P.V. Unite the people: Closing the loop between 3d and 2d human representations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 June 2017; pp. 6050–6059. [Google Scholar]
- Kanazawa, A.; Black, M.J.; Jacobs, D.W.; Malik, J. End-to-end recovery of human shape and pose. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7122–7131. [Google Scholar]
- Martin, R. Lehrbuch der Anthropologie—In systematischer Darstellung. Rev. Port. De Filos. 1968, 24, 253–254. [Google Scholar]
- Yurtkulu, S.C.; Şahin, Y.H.; Unal, G. Semantic segmentation with extended DeepLabv3 architecture. In Proceedings of the 2019 27th Signal Processing and Communications Applications Conference (SIU), Sivas, Turkey, 24–26 April 2019; pp. 1–4. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Everingham, M.; van Gool, L.; Williams CK, I.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Bompa, T.O.; di Pasquale, M.; Cornacchia, L. Serious Strength Training; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Rhea, M.R.; Alvar, B.A.; Ball, S.D.; Burkett, L.N. Three sets of weight training superior to 1 set with equal intensity for eliciting strength. J. Strength Cond. Res. 2002, 16, 525–529. [Google Scholar] [PubMed]
- Ostrowski, K.J.; Wilson, G.J.; Weatherby, R.; Murphy, P.W.; Lyttle, A.D. The effect of weight training volume on hormonal output and muscular size and function. J. Strength Cond. Res. 1997, 11, 148–154. [Google Scholar]
- Munn, J.; Herbert, R.D.; Hancock, M.J.; Gandevia, S.C. Resistance training for strength: Effect of number of sets and contraction speed. Med. Sci. Sports Exerc. 2005, 37, 1622. [Google Scholar] [CrossRef] [PubMed]
- Sarsan, A.; Ardiç, F.; Özgen, M.; Topuz, O.; Sermez, Y. The effects of aerobic and resistance exercises in obese women. Clin. Rehabil. 2006, 20, 773–782. [Google Scholar] [CrossRef] [PubMed]
- McTiernan, A.; Sorensen, B.; Irwin, M.L.; Morgan, A.; Yasui, Y.; Rudolph, R.E.; Surawicz, C.; Lampe, J.W.; Lampe, P.D.; Ayub, K.; et al. Exercise effect on weight and body fat in men and women. Obesity 2007, 15, 1496–1512. [Google Scholar] [CrossRef] [PubMed]
- Boyd, E. The Growth of the Surface Area o! the Human Body. 1935. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19361401350 (accessed on 16 April 2024).
- Robinette, K.M.; Daanen, H.; Paquet, E. The CAESAR project: A 3-D surface anthropometry survey. In Proceedings of the Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062), Ottawa, ON, Canada, 8 October 1999; pp. 380–386. [Google Scholar]
- Daanen, H.A.M. Circumference estimation using 3D-whole body scanners and shadow scanner. In Proceedings of the Workshop on 3D Anthropometry and Industrial Products Design, Paris, France, 25–26 June 1998; Volume 5, p. 1. [Google Scholar]
- ISO 15535:2012; General Requirements for Establishing Anthropometric Databases. ISO: Geneva, Switzerland, 2012.
- Sheldon, W.H.; Stevens, S.S.; Tucker, W.B. The Varieties of Human Physique; Harper: New York, NY, USA, 1940. [Google Scholar]
- Rasband, J.; Liechty, E.G. Fabulous Fit: Speed Fitting and Alteration; Fairchild Publications, Incorporated: New York, NY, USA, 2006. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
3D Model File (.obj) | 30e_3dm | 54e_3dm | 57e_3dm | 107e_3dm | … | 62e_3dm |
---|---|---|---|---|---|---|
Stature (cm) | 170 | 172 | 170 | 168 | … | 182 |
Waist circumference (Natural indentation; cm) | 84 | 85 | 85 | 89 | … | 93 |
Waist circumference (Omphalion; cm) | 82 | 86 | 84 | 90 | … | 93 |
Bust circumference (cm) | 101 | 93 | 95 | 100 | … | 106 |
Wrist circumference (cm) | 18 | 17 | 17 | 18 | … | 18 |
Neck circumference (cm) | 37 | 38 | 41 | 39 | … | 42 |
Arm length (cm) | 56 | 57 | 56 | 54 | … | 61 |
Thigh circumference (cm) | 55 | 55 | 53 | 62 | … | 59 |
Biacromial breadth (cm) | 45 | 45 | 47 | 43 | … | 45 |
Hip circumference (cm) | 95 | 92 | 91 | 97 | … | 97 |
Upper arm circumference (cm) | 38 | 42 | 35 | 29 | … | 31 |
Body type | 40avgm | 40avgm | 40avgm | 40avgm | … | 40avgm |
Exercise Plan | Plan A | Plan B | Plan C | Plan D | Plan E | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exercise code * | a, b, c, d, e, f | a, b | a, b, e, f, g, h, i, j, k | c | a, c, h, o, p, q | r, s | r, s | ||||||||
Gender | M | M | M | F | F | M | F | ||||||||
Week | 12 | 10 | 6 | 12 | 12 | 48 | 12 | 48 | |||||||
Exercise per week | 3 | 4 | 3 | 3 | 4 | 6 | |||||||||
Iteration per set | 8~12 | 8 | 6~8 | 8~12 | |||||||||||
Set number | 1 | 3 | 3 | 6 | 2~3 | ||||||||||
Minutes per exercise | 30 | 60 | |||||||||||||
Weight (%) | 2.02 | 2.63 | 2.19 | −3.37 | −4.02 | −1.30 | −1.90 | −0.50 | −1.80 | ||||||
Waist circumference (%) | −2.32 | −5.86 | −1.90 | −3.20 | −1.90 | −1.60 | |||||||||
Bust circumference (%) | 1.53 | 2.20 | |||||||||||||
Upper arm circumference (%) | 2.27 | 4.65 | 4.76 | 1.89 | 1.76 | 1.89 | 1.76 | ||||||||
Thigh circumference (%) | −0.98 | 1.30 | 2.94 | 1.50 | 6.35 | ||||||||||
Hip circumference (%) | −2.33 | −2.33 |
Exercise Code | Exercise Name | Primary Worked Muscle |
---|---|---|
a | Bench press | Pectoralis major, anterior deltoids, triceps brachii |
b | Leg press | Rectus femoris, vastus intermedius, vastus medialis, vastus lateralis |
c | Biceps curl | Biceps brachii, brachialis |
d | Pull-down | Latissimus dorsi, brachialis, brachioradialis |
e | Seated row | Latissimus dorsi, trapezius, rhomboids, erector spinae |
f | Back extension | Erector spinae |
g | Squat | Rectus femoris, vastus intermedius, vastus medialis, glutes, vastus lateralis |
h | Leg extension | Vastus medialis, vastus lateralis, rectus femoris, vastus intermedius |
i | Stiff-leg deadlift | Biceps femoris, semimembranosus, semitendinosus, gluteus maximus |
j | Leg curl | Biceps femoris, semimembranosus, semitendinosus |
k | Calf raise | Gastrocnemius |
l | Shoulder press | Anterior deltoids |
m | Upright row | Trapezius, anterior deltoids, medial deltoids |
n | Close grip bench press | Triceps, middle pectoralis major, middle pectoralis major |
o | Arm extension | Outer triceps, medial triceps, anconeus |
p | Twisting Oblique | Upper rectus abdominis, lower rectus abdominis serratus muscles, exterior oblique |
q | Abdominal crunch | Upper rectus abdominis, middle rectus abdominis |
r | Walking | - |
s | Leg cycle | - |
Factor | |||||
---|---|---|---|---|---|
Cluster | Height | Circumference (Thickness) | Torso Length | Shoulder Width | Ratio (%) |
1 | P9 (1.16) | P5 (−0.44) | P6 (0.14) | P6 (0.23) | 21 |
Tall height and the rest are normal. | |||||
2 | P5 (−0.11) | P6 (0.17) | P7 (0.47) | P2 (−1.24) | 21 |
Short torso with very narrow shoulders. | |||||
3 | P5 (−0.22) | P7 (0.33) | P2 (−1.24) | P6 (0.123) | 28 |
Thick and very short torso. | |||||
4 | P3 (−0.55) | P5 (−0.11) | P8 (0.74) | P8 (0.59) | 30 |
Short height and long torso with wide shoulders. |
Body Type | Ratio (%) | Detailed Characteristic (Compared to Standard Body Type) |
---|---|---|
Inverted triangular | 27.7 | Slightly thick torso, wide shoulder width, small head, short hip length |
Small rectangular | 28.5 | Thin torso, narrow shoulder width, long arm length, big head, short hip length, long limbs |
Triangular | 20.8 | Normal torso, narrow shoulder width, very short arm length, very small head, long hip length, slightly short limbs |
Large triangular | 23.0 | Very thick torso, wide shoulder width, very big head, long hip length, very short limbs |
Total | 100.0 |
Gender | Age | Number of Subjects | Ratio (%) |
---|---|---|---|
Male | 20–29 | 42 | 24 |
30–39 | 5 | 3 | |
40–49 | 10 | 6 | |
50–59 | 15 | 9 | |
60–69 | 13 | 7 | |
70– | 8 | 4 | |
Female | 20–29 | 31 | 18 |
30–39 | 3 | 2 | |
40–49 | 13 | 7 | |
50–59 | 19 | 11 | |
60–69 | 12 | 7 | |
70– | 3 | 2 | |
Total | 174 | 100 |
Anthropometric Variable | Direct Measurement | HMR without Segmentation |
---|---|---|
Stature (cm) | 169.09 | 169.09 |
Waist Circumference (Natural Indentation; cm) | 83.41 | 84.90 |
Waist Circumference (Omphalion; cm) | 76.90 | 74.23 |
Bust Circumference (cm) | 96.94 | 93.95 |
Wrist Circumference (cm) | 15.27 | 15.11 |
Neck Circumference (cm) | 43.98 | 42.12 |
Arm Length (cm) | 51.20 | 50.74 |
Thigh Circumference (cm) | 57.01 | 54.56 |
Biacromial Breadth (cm) | 48.52 | 46.95 |
Hip Circumference (cm) | 96.94 | 95.86 |
Anthropometric Variable | Direct Measurement | Condition (1) | Condition (2) | Condition (3) | Condition (4) |
---|---|---|---|---|---|
Stature (cm) | 169.09 | 169.09 | 169.09 | 169.09 | 169.09 |
Waist circumference (Natural indentation; cm) | 83.41 | 82.81 | 82.9 | 82.04 | 82.01 |
Waist circumference (Omphalion; cm) | 76.90 | 78.38 | 78.23 | 77.77 | 77.77 |
Bust circumference (cm) | 96.94 | 94.89 | 93.95 | 98.06 | 97.14 |
Wrist circumference (cm) | 15.27 | 15.07 | 15.11 | 15.12 | 15.21 |
Neck circumference (cm) | 43.98 | 42.03 | 42.12 | 43.14 | 43.32 |
Arm length (cm) | 51.20 | 50.84 | 50.74 | 51.1 | 51.05 |
Thigh circumference (cm) | 57.01 | 54.88 | 54.56 | 55.78 | 56.69 |
Biacromial breadth (cm) | 48.52 | 47.98 | 47.95 | 48.75 | 48.57 |
Hip circumference (cm) | 96.94 | 96.01 | 96.86 | 95.62 | 95.5 |
Computational Metrics | MobilenetV2 Architecture (Conditions (1) and (2)) | Xception Architecture (Conditions (3) and (4)) |
---|---|---|
FLOPs | 35.5 G | 9.8 G |
# param. | 22.8 M | 2.1 M |
GPU usage (%) | 65.6% | 22.3% |
Metrics | ASPP Condition (1) | ASPP Condition (2) | ASPP Condition (3) |
---|---|---|---|
FLOPs | 8.8 G | 9.1 G | 9.8 G |
# param. | 1.9 M | 2.0 M | 2.1 M |
IoU (%) | 72.4% | 72.7% | 73.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
So, J.; Youm, S.; Kim, S. A Human Body Simulation Using Semantic Segmentation and Image-Based Reconstruction Techniques for Personalized Healthcare. Appl. Sci. 2024, 14, 7107. https://doi.org/10.3390/app14167107
So J, Youm S, Kim S. A Human Body Simulation Using Semantic Segmentation and Image-Based Reconstruction Techniques for Personalized Healthcare. Applied Sciences. 2024; 14(16):7107. https://doi.org/10.3390/app14167107
Chicago/Turabian StyleSo, Junyong, Sekyoung Youm, and Sojung Kim. 2024. "A Human Body Simulation Using Semantic Segmentation and Image-Based Reconstruction Techniques for Personalized Healthcare" Applied Sciences 14, no. 16: 7107. https://doi.org/10.3390/app14167107
APA StyleSo, J., Youm, S., & Kim, S. (2024). A Human Body Simulation Using Semantic Segmentation and Image-Based Reconstruction Techniques for Personalized Healthcare. Applied Sciences, 14(16), 7107. https://doi.org/10.3390/app14167107