Simulation Study of Dynamic Rotation and Deformation for Plasmonic Electric Field-Skyrmions
Abstract
:1. Introduction
2. Simulation and Methods
3. Results and Discussions
3.1. Dynamic Rotation for Skyrmions
3.2. Dynamic Deformation for Skyrmions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Skyrme, T.H.R. The origins of skyrmions. Int. J. Mod. Phys. A 1988, 3, 2745–2751. [Google Scholar] [CrossRef]
- Pfleiderer, C. Magnetic Order Surfaces get hairy. Nat. Phys. 2011, 7, 673–674. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Lei, N.; Wang, C.X.; Zhang, X.C.; Kang, W.; Zhu, D.Q.; Zhou, Y.; Liu, X.X.; Zhang, Y.G.; Zhao, W.S. Voltage-Driven High-Speed Skyrmion Motion in a Skyrmion-Shift Device. Phys. Rev. Appl. 2019, 11, 014004. [Google Scholar] [CrossRef]
- Yu, X.Z.; Kanazawa, N.; Zhang, W.Z.; Nagai, T.; Hara, T.; Kimoto, K.; Matsui, Y.; Onose, Y.; Tokura, Y. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 2012, 3, 988. [Google Scholar] [CrossRef]
- Yu, X.Z.; Onose, Y.; Kanazawa, N.; Park, J.H.; Han, J.H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911. [Google Scholar] [CrossRef] [PubMed]
- Tsesses, S.; Ostrovsky, E.; Cohen, K.; Gjonaj, B.; Lindner, N.H.; Bartal, G. Optical skyrmion lattice in evanescent electromagnetic fields. Science 2018, 361, 993–996. [Google Scholar] [CrossRef]
- Hurtado-Aviles, E.A.; Trejo-Valdez, M.; Torres, J.A.; Ramos-Torres, C.J.; Martinez-Gutierrez, H.; Torres-Torres, C. Photo-induced structured waves by nanostructured topological insulator Bi2Te3. Opt. Laser Technol. 2021, 140, 107015. [Google Scholar] [CrossRef]
- Shi, P.; Du, L.P.; Yuan, X.C. Spin photonics: From transverse spin to photonic skyrmions. Nanophotonics 2021, 10, 3927–3943. [Google Scholar] [CrossRef]
- Davis, T.J.; Janoschka, D.; Dreher, P.; Frank, B.; zu Heringdorf, F.J.M.; Giessen, H. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science 2020, 368, 386. [Google Scholar] [CrossRef]
- Lin, W.B.; Ota, Y.; Arakawa, Y.; Iwamoto, S. Microcavity-based generation of full Poincare beams with arbitrary skyrmion numbers. Phys. Rev. Res. 2021, 3, 023055. [Google Scholar] [CrossRef]
- Du, L.P.; Yang, A.P.; Zayats, A.V.; Yuan, X.C. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys. 2019, 15, 650. [Google Scholar] [CrossRef]
- Sugic, D.; Droop, R.; Otte, E.; Ehrmanntraut, D.; Nori, F.; Ruostekoski, J.; Denz, C.; Dennis, M.R. Particle-like topologies in light. Nat. Commun. 2021, 12, 6785. [Google Scholar] [CrossRef] [PubMed]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin-orbit interactions of light. Nat. Photonics 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Dai, Y.A.; Zhou, Z.K.; Ghosh, A.; Mong, R.S.K.; Kubo, A.; Huang, C.B.; Petek, H. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature 2020, 588, 616. [Google Scholar] [CrossRef]
- Lei, X.R.; Yang, A.P.; Shi, P.; Xie, Z.W.; Du, L.P.; Zayats, A.V.; Yuan, X.C. Photonic Spin Lattices: Symmetry Constraints for Skyrmion and Meron Topologies. Phys. Rev. Lett. 2021, 127, 237403. [Google Scholar] [CrossRef]
- Bai, C.Y.; Chen, J.; Zhang, Y.X.; Zhang, D.W.; Zhan, Q.W. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons. Opt. Express 2020, 28, 10320–10328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Lei, X.; Liu, J.; Zhan, Q. Dynamic manipulation of graphene plasmonic skyrmions arXiv. arXiv 2023, arXiv:2306.14659. [Google Scholar]
- Van Mechelen, T.; Jacob, Z. Universal spin-momentum locking of evanescent waves. Optica 2016, 3, 118–126. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. Rev. Sect. Phys. Lett. 2015, 592, 1–38. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Nori, F. Transverse spin of a surface polariton. Phys. Rev. A 2012, 85, 06180. [Google Scholar] [CrossRef]
- Zhang, Q.; Xie, Z.W.; Shi, P.; Yang, H.; He, H.R.; Du, L.P.; Yuan, X.C. Optical topological lattices of Bloch-type skyrmion and meron topologies. Photonics Res. 2022, 10, 947–957. [Google Scholar] [CrossRef]
- Nicolas, A.; Veissier, L.; Giner, L.; Giacobino, E.; Maxein, D.; Laurat, J. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics 2014, 8, 234–238. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, B.W.; Zhong, W.; Sheng, Y.B. Device-Independent Quantum Secure Direct Communication with Single-Photon. Phys. Rev. Appl. 2023, 19, 014036. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Shih-Hui, C.; Gray, S.K.; Schatz, G.C. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Express 2005, 13, 3150–3165. [Google Scholar]
- Kuo, C.F.; Chu, S.C. Dynamic control of the interference pattern of surface plasmon polaritons and its application to particle manipulation. Opt. Express 2018, 26, 19123–19136. [Google Scholar] [CrossRef]
- Parigi, V.; D’Ambrosio, V.; Arnold, C.; Marrucci, L.; Sciarrino, F.; Laurat, J. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun. 2015, 6, 7706. [Google Scholar] [CrossRef]
- Shen, Y.; Martínez, E.C.; Rosales-Guzmán, C. Generation of Optical Skyrmions with Tunable Topological Textures. ACS Photonics 2022, 9, 296–303. [Google Scholar] [CrossRef]
- Li, X.H.; Liu, L.L.; Zhou, Z.X.; Shen, J.R.; Zhang, Y.R.; Han, G.D.; Li, Z. Highly Sensitive and Topologically Robust Multimode Sensing on Spoof Plasmonic Skyrmions. Adv. Opt. Mater. 2022, 10, 2200331. [Google Scholar] [CrossRef]
- Göbel, B.; Mertig, I.; Tretiakov, O.A. Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles. Phys. Rep. Rev. Sect. Phys. Lett. 2021, 895, 1–28. [Google Scholar] [CrossRef]
Rotation State | Adjusted Values of Phase | Positions of Slits |
---|---|---|
Horizontal state | 4 | |
Small-acute-angle tilted state | 3 | |
large-acute-angle tilted state | 2 | |
Right-angled tilted state | 1 |
Rotation State | Deformations | Adjusted Values of Phase | Positions of Slits |
---|---|---|---|
Horizontal state | Standard initial-state skyrmions | / | |
Obviously deformed to the right | 4 | ||
Acute angle tilted state | Slightly deformed in the upward-right tilt direction | 1, 4 | |
Deformation in the upward-right tilt direction | 1, 4 | ||
Obvious deformation in the upward-right tilt direction | 1, 4 | ||
Severe deformation in the upward-right tilt direction | 1, 4 | ||
Right angle tilted state | Obvious upward tilt deformation | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, G.; Bai, C.; Kanwal, S.; Zhao, Z.; Zhang, D. Simulation Study of Dynamic Rotation and Deformation for Plasmonic Electric Field-Skyrmions. Appl. Sci. 2024, 14, 7425. https://doi.org/10.3390/app14167425
Tang G, Bai C, Kanwal S, Zhao Z, Zhang D. Simulation Study of Dynamic Rotation and Deformation for Plasmonic Electric Field-Skyrmions. Applied Sciences. 2024; 14(16):7425. https://doi.org/10.3390/app14167425
Chicago/Turabian StyleTang, Gao, Chunyan Bai, Saima Kanwal, Zhening Zhao, and Dawei Zhang. 2024. "Simulation Study of Dynamic Rotation and Deformation for Plasmonic Electric Field-Skyrmions" Applied Sciences 14, no. 16: 7425. https://doi.org/10.3390/app14167425
APA StyleTang, G., Bai, C., Kanwal, S., Zhao, Z., & Zhang, D. (2024). Simulation Study of Dynamic Rotation and Deformation for Plasmonic Electric Field-Skyrmions. Applied Sciences, 14(16), 7425. https://doi.org/10.3390/app14167425