Large Language Models for Intelligent Transportation: A Review of the State of the Art and Challenges
Abstract
:1. Introduction
2. Preliminaries on Large Language Models
3. Literature Review
3.1. Autonomous Driving
3.2. Safety
3.3. Tourism
3.4. Traffic
3.5. Other
4. Challenges
4.1. Open-Source Models and Reproducibility
4.2. Human–Machine Interaction
4.3. Real-Time Capabilities of LLMs
4.4. Multi-Modal Integration
4.5. Verification and Validation Efforts
4.6. Ethical Considerations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Yao, J.; Li, B.; Zhang, R.; Qiu, Z. SPSRec: An Efficient Signal Phase Recommendation for Signalized Intersections With GAN and Decision-Tree Model. IEEE Trans. Intell. Transp. Syst. 2023, 24, 15601–15612. [Google Scholar] [CrossRef]
- Qin, B.; Qian, J.; Xin, Y.; Liu, B.; Dong, Y. Distracted Driver Detection Based on a CNN With Decreasing Filter Size. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6922–6933. [Google Scholar] [CrossRef]
- Wu, M.; Yu, F.R.; Liu, P.X.; He, Y. A Hybrid Driving Decision-Making System Integrating Markov Logic Networks and Connectionist AI. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3514–3527. [Google Scholar] [CrossRef]
- Bogyrbayeva, A.; Meraliyev, M.; Mustakhov, T.; Dauletbayev, B. Machine Learning to Solve Vehicle Routing Problems: A Survey. IEEE Trans. Intell. Transp. Syst. 2024, 25, 4754–4772. [Google Scholar] [CrossRef]
- Chen, M.; Yuan, Q.; Yang, C.; Zhang, Y. Decoding Urban Mobility: Application of Natural Language Processing and Machine Learning to Activity Pattern Recognition, Prediction, and Temporal Transferability Examination. IEEE Trans. Intell. Transp. Syst. 2024, 25, 7151–7173. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, Y. Travel Mode Choice Prediction Using Imbalanced Machine Learning. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3795–3808. [Google Scholar] [CrossRef]
- McCoy, J.; Rawal, A.; Rawat, D.B.; Sadler, B.M. Ensemble Deep Learning for Sustainable Multimodal UAV Classification. IEEE Trans. Intell. Transp. Syst. 2023, 24, 15425–15434. [Google Scholar] [CrossRef]
- Geske, A.M.; Herold, D.M.; Kummer, S. Integrating AI support into a framework for collaborative decision-making (CDM) for airline disruption management. J. Air Transp. Res. Soc. 2024, 3, 100026. [Google Scholar] [CrossRef]
- Geske, A.M.; Herold, D.M.; Kummer, S. Artificial Intelligence as a driver of efficiency in air passenger transport: A systematic literature review and future research avenues. J. Air Transp. Res. Soc. 2024, 3, 100030. [Google Scholar] [CrossRef]
- Wei, J.; Tay, Y.; Bommasani, R.; Raffel, C.; Zoph, B.; Borgeaud, S.; Yogatama, D.; Bosma, M.; Zhou, D.; Metzler, D.; et al. Emergent abilities of Large Language Models. arXiv 2022, arXiv:2206.07682. [Google Scholar]
- Fei, N.; Lu, Z.; Gao, Y.; Yang, G.; Huo, Y.; Wen, J.; Lu, H.; Song, R.; Gao, X.; Xiang, T.; et al. Towards artificial general intelligence via a multimodal foundation model. Nat. Commun. 2022, 13, 3094. [Google Scholar] [CrossRef]
- Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.; Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y.T.; Li, Y.; Lundberg, S.; et al. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv 2023, arXiv:2303.12712. [Google Scholar]
- Katz, D.M.; Bommarito, M.J.; Gao, S.; Arredondo, P. Gpt-4 passes the bar exam. Philos. Trans. R. Soc. A 2023, 382, 20230254. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, Y.; Du, Z.; Ding, M.; Qian, Y.; Yang, Z.; Tang, J. GPT understands, too. AI Open 2023. [CrossRef]
- Liu, Y. Large language models for air transportation: A critical review. J. Air Transp. Res. Soc. 2024, 2, 100024. [Google Scholar] [CrossRef]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI Blog 2019, 1, 9. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Min, B.; Ross, H.; Sulem, E.; Veyseh, A.P.B.; Nguyen, T.H.; Sainz, O.; Agirre, E.; Heintz, I.; Roth, D. Recent advances in natural language processing via large pre-trained language models: A survey. ACM Comput. Surv. 2023, 56, 1–40. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Chen, H.; Yuan, K.; Huang, Y.; Guo, L.; Wang, Y.; Chen, J. Feedback is all you need: From ChatGPT to autonomous driving. Sci. China Inf. Sci. 2023, 66, 166201. [Google Scholar] [CrossRef]
- Cui, Y.; Huang, S.; Zhong, J.; Liu, Z.; Wang, Y.; Sun, C.; Li, B.; Wang, X.; Khajepour, A. DriveLLM: Charting the Path toward Full Autonomous Driving with Large Language Models. IEEE Trans. Intell. Veh. 2023, 9, 1450–1464. [Google Scholar] [CrossRef]
- Cui, C.; Ma, Y.; Cao, X.; Ye, W.; Zhou, Y.; Liang, K.; Chen, J.; Lu, J.; Yang, Z.; Liao, K.D.; et al. A Survey on Multimodal Large Language Models for Autonomous Driving. arXiv 2023, arXiv:2311.12320. [Google Scholar]
- Deng, Y.; Yao, J.; Tu, Z.; Zheng, X.; Zhang, M.; Zhang, T. TARGET: Traffic Rule-based Test Generation for Autonomous Driving Systems. arXiv 2023, arXiv:2305.06018. [Google Scholar]
- Dewangan, V.; Choudhary, T.; Chandhok, S.; Priyadarshan, S.; Jain, A.; Singh, A.K.; Srivastava, S.; Jatavallabhula, K.M.; Krishna, K.M. Talk2BEV: Language-enhanced Bird’s-eye View Maps for Autonomous Driving. arXiv 2023, arXiv:2310.02251. [Google Scholar]
- Du, H.; Teng, S.; Chen, H.; Ma, J.; Wang, X.; Gou, C.; Li, B.; Ma, S.; Miao, Q.; Na, X.; et al. Chat with chatgpt on intelligent vehicles: An IEEE tiv perspective. IEEE Trans. Intell. Veh. 2023, 8, 2020–2026. [Google Scholar] [CrossRef]
- Fu, D.; Li, X.; Wen, L.; Dou, M.; Cai, P.; Shi, B.; Qiao, Y. Drive like a human: Rethinking autonomous driving with large language models. arXiv 2023, arXiv:2307.07162. [Google Scholar]
- Lei, L.; Zhang, H.; Yang, S.X. ChatGPT in connected and autonomous vehicles: Benefits and challenges. Intell. Robot. 2023, 3, 145–148. [Google Scholar] [CrossRef]
- Sha, H.; Mu, Y.; Jiang, Y.; Chen, L.; Xu, C.; Luo, P.; Li, S.E.; Tomizuka, M.; Zhan, W.; Ding, M. Languagempc: Large language models as decision makers for autonomous driving. arXiv 2023, arXiv:2310.03026. [Google Scholar]
- Singh, G. Leveraging ChatGPT for Real-Time Decision-Making in Autonomous Systems. Eduzone Int. Peer Rev./Ref. Multidiscip. J. 2023, 12, 101–106. [Google Scholar] [CrossRef]
- Tian, Y.; Li, X.; Zhang, H.; Zhao, C.; Li, B.; Wang, X.; Wang, F.Y. VistaGPT: Generative Parallel Transformers for Vehicles With Intelligent Systems for Transport Automation. IEEE Trans. Intell. Veh. 2023, 8, 4198–4207. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, R.; Lang, C.; Zhan, S.S.; Huang, C.; Wang, Z.; Yang, Z.; Zhu, Q. Empowering Autonomous Driving with Large Language Models: A Safety Perspective. arXiv 2023, arXiv:2312.00812. [Google Scholar]
- Wen, L.; Fu, D.; Li, X.; Cai, X.; Ma, T.; Cai, P.; Dou, M.; Shi, B.; He, L.; Qiao, Y. Dilu: A knowledge-driven approach to autonomous driving with large language models. arXiv 2023, arXiv:2309.16292. [Google Scholar]
- Xu, Z.; Zhang, Y.; Xie, E.; Zhao, Z.; Guo, Y.; Wong, K.K.; Li, Z.; Zhao, H. Drivegpt4: Interpretable end-to-end autonomous driving via large language model. arXiv 2023, arXiv:2310.01412. [Google Scholar] [CrossRef]
- Yang, Z.; Jia, X.; Li, H.; Yan, J. A Survey of Large Language Models for Autonomous Driving. arXiv 2023, arXiv:2311.01043. [Google Scholar]
- Zhao, Y.; Li, Z.; Jin, Z.; Zhang, F.; Zhao, H.; Dou, C.; Tao, Z.; Xu, X.; Liu, D. Enhancing the Spatial Awareness Capability of Multi-Modal Large Language Model. arXiv 2023, arXiv:2310.20357. [Google Scholar]
- Zhou, X.; Liu, M.; Zagar, B.L.; Yurtsever, E.; Knoll, A.C. Vision language models in autonomous driving and intelligent transportation systems. arXiv 2023, arXiv:2310.14414. [Google Scholar]
- Andrade, S.R.; Walsh, H.S. SafeAeroBERT: Towards a Safety-Informed Aerospace-Specific Language Model. In Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA, 12–16 June 2023; p. 3437. [Google Scholar]
- Arteaga, C.; Park, J.W. A Large Language Model Framework to Uncover Underreporting in Traffic Crashes. 2023. SSRN 4613378. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4613378 (accessed on 22 November 2023).
- Chandra, C.; Jing, X.; Bendarkar, M.V.; Sawant, K.; Elias, L.; Kirby, M.; Mavris, D.N. Aviation-BERT: A Preliminary Aviation-Specific Natural Language Model. In Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA, 12–16 June 2023; p. 3436. [Google Scholar]
- Cheng, Z.; Duan, Z.; Bu, N.; Liu, Y.; Cao, J.; Gao, Z.; Zuo, P. ERNIE-based Named Entity Recognition Method for Traffic Accident Cases. In Journal of Physics: Conference Series, Proceedings of the 16th International Conference on Computer and Electrical Engineering (ICCEE 2023), Xian, China, 23–25 June 2023; IOP Publishing: Beijing, China, 2023; Volume 2589, p. 012020. [Google Scholar]
- de Zarzà, I.; de Curtò, J.; Roig, G.; Calafate, C.T. LLM multimodal traffic accident forecasting. Sensors 2023, 23, 9225. [Google Scholar] [CrossRef]
- Dong, T.; Yang, Q.; Ebadi, N.; Luo, X.R.; Rad, P. Identifying incident causal factors to improve aviation transportation safety: Proposing a deep learning approach. J. Adv. Transp. 2021, 2021, 5540046. [Google Scholar] [CrossRef]
- Jing, X.; Chennakesavan, A.; Chandra, C.; Bendarkar, M.V.; Kirby, M.; Mavris, D.N. BERT for Aviation Text Classification. In Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA, 12–16 June 2023; p. 3438. [Google Scholar]
- Kierszbaum, S.; Klein, T.; Lapasset, L. ASRS-CMFS vs. RoBERTa: Comparing Two Pre-Trained Language Models to Predict Anomalies in Aviation Occurrence Reports with a Low Volume of In-Domain Data Available. Aerospace 2022, 9, 591. [Google Scholar] [CrossRef]
- Mumtarin, M.; Chowdhury, M.S.; Wood, J. Large Language Models in Analyzing Crash Narratives—A Comparative Study of ChatGPT, BARD and GPT-4. arXiv 2023, arXiv:2308.13563. [Google Scholar]
- Raja, K.V.; Siddharth, R.; Yuvaraj, S.; Kumar, K.R. An Artificial Intelligence based automated case-based reasoning (CBR) system for severity investigation and root-cause analysis of road accidents–Comparative analysis with the predictions of ChatGPT. J. Eng. Res. 2023. [CrossRef]
- Tikayat Ray, A.; Bhat, A.P.; White, R.T.; Nguyen, V.M.; Pinon Fischer, O.J.; Mavris, D.N. Examining the Potential of Generative Language Models for Aviation Safety Analysis: Case Study and Insights Using the Aviation Safety Reporting System (ASRS). Aerospace 2023, 10, 770. [Google Scholar] [CrossRef]
- Yang, C.; Huang, C. Natural Language Processing (NLP) in Aviation Safety: Systematic Review of Research and Outlook into the Future. Aerospace 2023, 10, 600. [Google Scholar] [CrossRef]
- Zheng, O.; Abdel-Aty, M.; Wang, D.; Wang, C.; Ding, S. TrafficSafetyGPT: Tuning a Pre-trained Large Language Model to a Domain-Specific Expert in Transportation Safety. arXiv 2023, arXiv:2307.15311. [Google Scholar]
- Zheng, O.; Abdel-Aty, M.; Wang, D.; Wang, Z.; Ding, S. ChatGPT is on the horizon: Could a Large Language Model be all we need for Intelligent Transportation? arXiv 2023, arXiv:2303.05382. [Google Scholar]
- Ziakkas, D.; Pechlivanis, K. Artificial Intelligence applications in aviation accident classification: A preliminary exploratory study. Decis. Anal. J. 2023, 9, 100358. [Google Scholar] [CrossRef]
- Ali, F.; Yasar, B.; Ali, L.; Dogan, S. Antecedents and consequences of travelers’ trust towards personalized travel recommendations offered by ChatGPT. Int. J. Hosp. Manag. 2023, 114, 103588. [Google Scholar] [CrossRef]
- Carvalho, I.; Ivanov, S. ChatGPT for tourism: Applications, benefits and risks. Tour. Rev. 2023, 79, 290–303. [Google Scholar] [CrossRef]
- Demir, M.; Demir, Ş.Ş. Is ChatGPT the right technology for service individualization and value co-creation? evidence from the travel industry. J. Travel Tour. Mark. 2023, 40, 383–398. [Google Scholar] [CrossRef]
- Demir, Ş.Ş.; Demir, M. Professionals’ perspectives on ChatGPT in the tourism industry: Does it inspire awe or concern? J. Tour. Theory Res. 2023, 9, 61–76. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Pandey, N.; Currie, W.; Micu, A. Leveraging ChatGPT and other generative Artificial Intelligence (AI)-based applications in the hospitality and tourism industry: Practices, challenges and research agenda. Int. J. Contemp. Hosp. Manag. 2023, 36, 1–12. [Google Scholar] [CrossRef]
- Emrullah, E. Importance of ChatGPT in Tourism. J. Tour. Gastron. Stud. 2023, 11, 780–793. [Google Scholar]
- Flores-Cruz, G.; Hinkle, S.D.; Roque, N.A.; Mouloua, M. ChatGPT as the Ultimate Travel Buddy or Research Assistant: A Study on Perceived Attitudes and Usability. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Washington, DC, USA, 23–27 October 2023; SAGE Publications Sage CA: Los Angeles, CA, USA, 2023; pp. 459–464. [Google Scholar]
- Goktas, P.; Dirsehan, T. Optimizing Customer Experience in Hospitality and Tourism with ChatGPT Plugins: A Strategic Guide. 2023. SSRN 4602852. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4602852 (accessed on 9 November 2023).
- Gursoy, D.; Li, Y.; Song, H. ChatGPT and the hospitality and tourism industry: An overview of current trends and future research directions. J. Hosp. Mark. Manag. 2023, 32, 579–592. [Google Scholar] [CrossRef]
- Harahap, M.A.K.; Ausat, A.M.A.; Rachman, A.; Riady, Y.; Azzaakiyyah, H.K. Overview of ChatGPT Technology and its Potential in Improving Tourism Information Services. J. Minfo Polgan 2023, 12, 424–431. [Google Scholar] [CrossRef]
- Iskender, A. Holy or unholy? Interview with open AI’s ChatGPT. Eur. J. Tour. Res. 2023, 34, 3414. [Google Scholar] [CrossRef]
- Ivanov, S.; Soliman, M. Game of algorithms: ChatGPT implications for the future of tourism education and research. J. Tour. Futur. 2023, 9, 214–221. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.; Park, J.; Kim, C.; Jhang, J.; King, B. When ChatGPT Gives Incorrect Answers: The Impact of Inaccurate Information by Generative AI on Tourism Decision-Making. J. Travel Res. 2023. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.; Kim, S.; Hailu, T.B. Effects of AI ChatGPT on travelers’ travel decision-making. Tour. Rev. 2023, 79, 1038–1057. [Google Scholar] [CrossRef]
- Mich, L.; Garigliano, R. ChatGPT for e-Tourism: A technological perspective. Inf. Technol. Tour. 2023, 25, 1–12. [Google Scholar] [CrossRef]
- Nautiyal, R.; Albrecht, J.N.; Nautiyal, A. ChatGPT and tourism academia. Ann. Tour. Res. 2023, 99. [Google Scholar] [CrossRef]
- Shin, S.; Kim, J.; Lee, E.; Yhee, Y.; Koo, C. ChatGPT for Trip Planning: The Effect of Narrowing Down Options. J. Travel Res. 2023. [Google Scholar] [CrossRef]
- Sudirjo, F.; Diawati, P.; Riady, Y.; Ausat, A.M.A.; Suherlan, S. The Role of ChatGPT in Enhancing the Information Search and Decision-Making Process of Travellers. J. Minfo Polgan 2023, 12, 500–507. [Google Scholar] [CrossRef]
- Wong, I.A.; Lian, Q.L.; Sun, D. Autonomous travel decision-making: An early glimpse into ChatGPT and generative AI. J. Hosp. Tour. Manag. 2023, 56, 253–263. [Google Scholar] [CrossRef]
- Da, L.; Gao, M.; Mei, H.; Wei, H. LLM powered sim-to-real transfer for traffic signal control. arXiv 2023, arXiv:2308.14284. [Google Scholar]
- Das, S.; Oliaee, A.H.; Le, M.; Pratt, M.P.; Wu, J. Classifying Pedestrian Maneuver Types Using the Advanced Language Model. Transp. Res. Rec. 2023, 2677, 599–611. [Google Scholar] [CrossRef]
- Driessen, T.; Dodou, D.; Bazilinskyy, P.; de Winter, J. Putting ChatGPT Vision (GPT-4V) to the test: Risk perception in traffic images. R. Soc. Open Sci. 2023, 11, 231676. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Zhang, Z.; Fan, P.; Zhang, J.; Yang, B. A context-aware language model to improve the speech recognition in air traffic control. Aerospace 2021, 8, 348. [Google Scholar] [CrossRef]
- Jin, K.; Wi, J.; Lee, E.; Kang, S.; Kim, S.; Kim, Y. TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting. Expert Syst. Appl. 2021, 186, 115738. [Google Scholar] [CrossRef]
- Jin, Y.; Shen, X.; Peng, H.; Liu, X.; Qin, J.; Li, J.; Xie, J.; Gao, P.; Zhou, G.; Gong, J. Surrealdriver: Designing generative driver agent simulation framework in urban contexts based on Large Language Model. arXiv 2023, arXiv:2309.13193. [Google Scholar]
- Maynard, P.; Clarke, S.S.; Almache, J.; Kumar, S.; Rajkumar, S.; Kemp, A.; Pai, R. Natural Language Processing (NLP) Techniques for Air Traffic Management Planning. In Proceedings of the AIAA AVIATION 2021 Forum, Virtual, 2–6 August 2021; p. 2322. [Google Scholar]
- Mo, B.; Xu, H.; Zhuang, D.; Ma, R.; Guo, X.; Zhao, J. Large Language Models for Travel Behavior Prediction. arXiv 2023, arXiv:2312.00819. [Google Scholar]
- Qasemi, E.; Francis, J.M.; Oltramari, A. Traffic-domain video question answering with automatic captioning. arXiv 2023, arXiv:2307.09636. [Google Scholar]
- Singh, G. Enhancing Driving Experience and Safety through ChatGPT in Vehicle Systems. Eduzone Int. Peer Rev. Multidiscip. J. 2023, 12, 118–124. [Google Scholar] [CrossRef]
- Sui, G.; Li, Z.; Li, Z.; Yang, S.; Ruan, J.; Mao, H.; Zhao, R. Reboost Large Language Model-based Text-to-SQL, Text-to-Python, and Text-to-Function—With Real Applications in Traffic Domain. arXiv 2023, arXiv:2310.18752. [Google Scholar]
- Tan, S.; Ivanovic, B.; Weng, X.; Pavone, M.; Kraehenbuehl, P. Language conditioned traffic generation. arXiv 2023, arXiv:2307.07947. [Google Scholar]
- Villarreal, M.; Poudel, B.; Li, W. Can ChatGPT Enable ITS? The Case of Mixed Traffic Control via Reinforcement Learning. arXiv 2023, arXiv:2306.08094. [Google Scholar]
- Wang, X.; Ding, H.; Xu, Q.; Liu, Z. Information Extraction of Air-Traffic Control Instructions via Pre-trained Models. In Artificial Intelligence in China, Proceedings of the 3rd International Conference on Artificial Intelligence in China, 2022; Springer: Singapore, 2022; pp. 82–91. [Google Scholar]
- Wang, S.; Zhu, Y.; Li, Z.; Wang, Y.; Li, L.; He, Z. ChatGPT as Your Vehicle Co-Pilot: An Initial Attempt. IEEE Trans. Intell. Veh. 2023, 8, 4706–4721. [Google Scholar] [CrossRef]
- Zhang, J.; Ilievski, F.; Ma, K.; Kollaa, A.; Francis, J.; Oltramari, A. A Study of Situational Reasoning for Traffic Understanding. arXiv 2023, arXiv:2306.02520. [Google Scholar]
- Zhang, J.; Pu, J.; Xue, J.; Yang, M.; Xu, X.; Wang, X.; Wang, F.Y. HiVeGPT: Human-machine-augmented intelligent vehicles with generative pre-trained transformer. IEEE Trans. Intell. Veh. 2023, 8, 2027–2033. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, D.; Zhang, Z.; Yu, B.; Cai, P. TrafficGPT: Viewing, Processing and Interacting with Traffic Foundation Models. arXiv 2023, arXiv:2309.06719. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, F.; Wu, L.; Xie, N.; He, Z. Semantic understanding and prompt engineering for large-scale traffic data imputation. Inf. Fusion 2024, 102, 102038. [Google Scholar] [CrossRef]
- Agarwal, A.; Gawade, S.; Azad, A.P.; Bhattacharyya, P. KITLM: Domain-Specific Knowledge InTegration into Language Models for Question Answering. arXiv 2023, arXiv:2308.03638. [Google Scholar]
- Chew, P. Pioneering Tomorrow’s AI System through Aerospace Engineering: An Empirical Study of the Peter Chew Method for Overcoming Error in Chat GPT. 2023. SSRN 4646033. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4646033 (accessed on 1 December 2023).
- Kim, J.; Lee, J. How does ChatGPT Introduce Transport Problems and Solutions in North America? Findings 2023. [CrossRef]
- Leong, M.; Abdelhalim, A.; Ha, J.; Patterson, D.; Pincus, G.L.; Harris, A.B.; Eichler, M.; Zhao, J. MetRoBERTa: Leveraging Traditional Customer Relationship Management Data to Develop a Transit-Topic-Aware Language Model. arXiv 2023, arXiv:2308.05012. [Google Scholar] [CrossRef]
- Nguyen, B.; Sonnenfeld, N.; Finkelstein, L.; Alonso, A.; Gomez, C.; Duruaku, F.; Jentsch, F. Using AI Tools to Develop Training Materials for Aviation: Ethical, Technical, and Practical Concerns. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Washington, DC, USA, 23–27 October 2023; SAGE Publications Sage CA: Los Angeles, CA, USA, 2023; p. 21695067231192904. [Google Scholar]
- Tikayat Ray, A.; Cole, B.F.; Pinon Fischer, O.J.; White, R.T.; Mavris, D.N. aeroBERT-Classifier: Classification of Aerospace Requirements Using BERT. Aerospace 2023, 10, 279. [Google Scholar] [CrossRef]
- Tikayat Ray, A.; Pinon-Fischer, O.J.; Mavris, D.N.; White, R.T.; Cole, B.F. aeroBERT-NER: Named-Entity Recognition for Aerospace Requirements Engineering using BERT. In Proceedings of the AIAA SCITECH 2023 Forum, San Diego, CA, USA, 12–16 June 2023; p. 2583. [Google Scholar]
- Voß, S. Bus Bunching and Bus Bridging: What Can We Learn from Generative AI Tools like ChatGPT? Sustainability 2023, 15, 9625. [Google Scholar] [CrossRef]
- Wang, L.; Chou, J.; Rouck, D.; Tien, A.; Baumgartner, D.M. Adapting Sentence Transformers for the Aviation Domain. arXiv 2023, arXiv:2305.09556. [Google Scholar]
- Wang, L.; Chou, J.; Zhou, X.; Tien, A.; Baumgartner, D.M. AviationGPT: A Large Language Model for the Aviation Domain. arXiv 2023, arXiv:2311.17686. [Google Scholar]
- Yenkikar, A.; Babu, C.N. AirBERT: A fine-tuned language representation model for airlines tweet sentiment analysis. Intell. Decis. Technol. 2023, 17, 435–455. [Google Scholar] [CrossRef]
- Chen, X.; Anerdi, G.; Tan, D.S.; Bromuri, S. Language Modeling in Logistics: Customer Calling Prediction. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 4–6 October 2023. [Google Scholar]
- Jackson, I.; Saenz, M.J. From Natural Language to Simulations: Applying GPT-3 Codex to Automate Simulation Modeling of Logistics Systems. arXiv 2022, arXiv:2202.12107. [Google Scholar] [CrossRef]
- Jackson, I.; Jesus Saenz, M.; Ivanov, D. From natural language to simulations: Applying AI to automate simulation modelling of logistics systems. Int. J. Prod. Res. 2023, 62, 1434–1457. [Google Scholar] [CrossRef]
- Kmiecik, M. ChatGPT in third-party logistics-the game-changer or a step into the unknown? J. Open Innov. Technol. Mark. Complex. 2023, 9, 100174. [Google Scholar] [CrossRef]
- Voß, S. Successfully Using ChatGPT in Logistics: Are We There Yet? In Proceedings of the International Conference on Computational Logistics, Berlin, Germany, 6–8 September 2023; pp. 3–17. [Google Scholar]
- Aggarwal, S. A Review of ChatGPT and its Impact in Different Domains. Int. J. Appl. Eng. Res. 2023, 18, 119–123. [Google Scholar] [CrossRef]
- Rane, N.L. Multidisciplinary Collaboration: Key Players in Successful Implementation of ChatGPT and Similar Generative Artificial Intelligence in Manufacturing, Finance, Retail, Transportation, and Construction Industry. OSF Preprints 2023. [Google Scholar] [CrossRef]
- Rice, S.; Crouse, S.R.; Winter, S.R.; Rice, C. The advantages and limitations of using ChatGPT to enhance technological research. Technol. Soc. 2023, 76, 102426. [Google Scholar] [CrossRef]
- Wandelt, S.; Sun, X.; Zhang, A. AI-driven assistants for education and research? A case study on ChatGPT for air transport management. J. Air Transp. Manag. 2023, 113, 102483. [Google Scholar] [CrossRef]
- Chen, H.; Jiao, F.; Li, X.; Qin, C.; Ravaut, M.; Zhao, R.; Xiong, C.; Joty, S. ChatGPT’s One-year Anniversary: Are Open-Source Large Language Models Catching up? arXiv 2023, arXiv:2311.16989. [Google Scholar]
- Kosch, T.; Feger, S. Risk or Chance? Large Language Models and Reproducibility in Human-Computer Interaction Research. arXiv 2024, arXiv:2404.15782. [Google Scholar]
- Biderman, S.; Schoelkopf, H.; Sutawika, L.; Gao, L.; Tow, J.; Abbasi, B.; Aji, A.F.; Ammanamanchi, P.S.; Black, S.; Clive, J.; et al. Lessons from the Trenches on Reproducible Evaluation of Language Models. arXiv 2024, arXiv:2405.14782. [Google Scholar]
- Rau, D.; Kamps, J. Query Generation Using Large Language Models: A Reproducibility Study of Unsupervised Passage Reranking. In Proceedings of the European Conference on Information Retrieval, Glasgow, Scotland, UK, 24–28 March 2024; pp. 226–239. [Google Scholar]
- Laskar, M.T.R.; Alqahtani, S.; Bari, M.S.; Rahman, M.; Khan, M.A.M.; Khan, H.; Jahan, I.; Bhuiyan, A.; Tan, C.W.; Parvez, M.R.; et al. A Systematic Survey and Critical Review on Evaluating Large Language Models: Challenges, Limitations, and Recommendations. arXiv 2024, arXiv:2407.04069. [Google Scholar]
- Ziems, C.; Held, W.; Shaikh, O.; Chen, J.; Zhang, Z.; Yang, D. Can Large Language Models transform computational social science? Comput. Linguist. 2024, 50, 237–291. [Google Scholar] [CrossRef]
- Franc, J.M.; Cheng, L.; Hart, A.; Hata, R.; Hertelendy, A. Repeatability, reproducibility, and diagnostic accuracy of a commercial Large Language Model (ChatGPT) to perform emergency department triage using the Canadian triage and acuity scale. Can. J. Emerg. Med. 2024, 26, 40–46. [Google Scholar] [CrossRef]
- Liu, Z.; Qiao, A.; Neiswanger, W.; Wang, H.; Tan, B.; Tao, T.; Li, J.; Wang, Y.; Sun, S.; Pangarkar, O.; et al. LLM360: Towards Fully Transparent Open-Source LLMs. arXiv 2023, arXiv:2312.06550. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 140:1–140:67. [Google Scholar]
- Xue, L.; Constant, N.; Roberts, A.; Kale, M.; Al-Rfou, R.; Siddhant, A.; Barua, A.; Raffel, C. mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, 6–11 June 2021; pp. 483–498. [Google Scholar]
- Zeng, W.; Ren, X.; Su, T.; Wang, H.; Liao, Y.; Wang, Z.; Jiang, X.; Yang, Z.; Wang, K.; Zhang, X.; et al. PanGu-α: Large-scale Autoregressive Pretrained Chinese Language Models with Auto-parallel Computation. arXiv 2021, arXiv:2104.12369. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, Y.; Han, X.; Chen, S.; Xiao, C.; Sun, Z.; Yao, Y.; Qi, F.; Guan, J.; Ke, P.; et al. CPM-2: Large-scale Cost-effective Pre-trained Language Models. AI Open 2021, 2, 216–224. [Google Scholar] [CrossRef]
- Sanh, V.; Webson, A.; Raffel, C.; Bach, S.H.; Sutawika, L.; Alyafeai, Z.; Chaffin, A.; Stiegler, A.; Raja, A.; Dey, M.; et al. Multitask Prompted Training Enables Zero-Shot Task Generalization. In Proceedings of the Tenth International Conference on Learning Representations (ICLR 2022), Virtual Event, 25–29 April 2022. [Google Scholar]
- Nijkamp, E.; Pang, B.; Hayashi, H.; Tu, L.; Wang, H.; Zhou, Y.; Savarese, S.; Xiong, C. Codegen: An open Large Language Model for code with mtulti-turn program synthesis. arXiv 2022, arXiv:2203.13474. [Google Scholar]
- Black, S.; Biderman, S.; Hallahan, E.; Anthony, Q.; Gao, L.; Golding, L.; He, H.; Leahy, C.; McDonell, K.; Phang, J.; et al. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. arXiv 2022, arXiv:2204.06745. [Google Scholar] [CrossRef]
- Wang, Y.; Mishra, S.; Alipoormolabashi, P.; Kordi, Y.; Mirzaei, A.; Naik, A.; Ashok, A.; Dhanasekaran, A.S.; Arunkumar, A.; Stap, D.; et al. Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, 7–11 December 2022; pp. 5085–5109. [Google Scholar]
- Tay, Y.; Dehghani, M.; Tran, V.Q.; García, X.; Wei, J.; Wang, X.; Chung, H.W.; Bahri, D.; Schuster, T.; Zheng, H.; et al. UL2: Unifying Language Learning Paradigms. arXiv 2022, arXiv:2205.05131. [Google Scholar] [CrossRef]
- Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.; Chen, S.; Dewan, C.; Diab, M.T.; Li, X.; Lin, X.V.; et al. OPT: Open Pre-trained Transformer Language Models. arXiv 2022, arXiv:2205.01068. [Google Scholar] [CrossRef]
- Costa-jussà, M.R.; Cross, J.; Çelebi, O.; Elbayad, M.; Heafield, K.; Heffernan, K.; Kalbassi, E.; Lam, J.; Licht, D.; Maillard, J.; et al. No Language Left Behind: Scaling Human-Centered Machine Translation. arXiv 2022, arXiv:2207.04672. [Google Scholar] [CrossRef]
- Zheng, Q.; Xia, X.; Zou, X.; Dong, Y.; Wang, S.; Xue, Y.; Wang, Z.; Shen, L.; Wang, A.; Li, Y.; et al. CodeGeeX: A Pre-Trained Model for Code Generation with Multilingual Evaluations on HumanEval-X. arXiv 2023, arXiv:2303.17568. [Google Scholar]
- Zeng, A.; Liu, X.; Du, Z.; Wang, Z.; Lai, H.; Ding, M.; Yang, Z.; Xu, Y.; Zheng, W.; Xia, X.; et al. GLM-130B: An Open Bilingual Pre-trained Model. arXiv 2022, arXiv:2210.02414. [Google Scholar] [CrossRef]
- Chung, H.W.; Hou, L.; Longpre, S.; Zoph, B.; Tay, Y.; Fedus, W.; Li, E.; Wang, X.; Dehghani, M.; Brahma, S.; et al. Scaling Instruction-Finetuned Language Models. J. Mach. Learn. Res. 2022, 25, 1–53. [Google Scholar]
- Scao, T.L.; Fan, A.; Akiki, C.; Pavlick, E.; Ilic, S.; Hesslow, D.; Castagné, R.; Luccioni, A.S.; Yvon, F.; Gallé, M.; et al. BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. arXiv 2022, arXiv:2211.05100. [Google Scholar] [CrossRef]
- Muennighoff, N.; Wang, T.; Sutawika, L.; Roberts, A.; Biderman, S.; Scao, T.L.; Bari, M.S.; Shen, S.; Yong, Z.X.; Schoelkopf, H.; et al. Crosslingual Generalization through Multitask Finetuning. arXiv 2022, arXiv:2211.01786. [Google Scholar]
- Taylor, R.; Kardas, M.; Cucurull, G.; Scialom, T.; Hartshorn, A.; Saravia, E.; Poulton, A.; Kerkez, V.; Stojnic, R. Galactica: A Large Language Model for Science. arXiv 2022, arXiv:2211.09085. [Google Scholar]
- Iyer, S.; Lin, X.V.; Pasunuru, R.; Mihaylov, T.; Simig, D.; Yu, P.; Shuster, K.; Wang, T.; Liu, Q.; Koura, P.S.; et al. OPT-IML: Scaling Language Model Instruction Meta Learning through the Lens of Generalization. arXiv 2022, arXiv:2212.12017. [Google Scholar]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Biderman, S.; Schoelkopf, H.; Anthony, Q.; Bradley, H.; O’Brien, K.; Hallahan, E.; Khan, M.A.; Purohit, S.; Prashanth, U.S.; Raff, E.; et al. Pythia: A Suite for Analyzing Large Language Models Across Training and Scaling. arXiv 2023, arXiv:2304.01373. [Google Scholar]
- Nijkamp, E.; Hayashi, H.; Xiong, C.; Savarese, S.; Zhou, Y. CodeGen2: Lessons for Training LLMs on Programming and Natural Languages. arXiv 2023, arXiv:2305.02309. [Google Scholar]
- Li, R.; Allal, L.B.; Zi, Y.; Muennighoff, N.; Kocetkov, D.; Mou, C.; Marone, M.; Akiki, C.; Li, J.; Chim, J.; et al. StarCoder: May the source be with you! arXiv 2023, arXiv:2305.06161. [Google Scholar] [CrossRef]
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al. Llama 2: Open foundation and fine-tuned chat models. arXiv 2023, arXiv:2307.09288. [Google Scholar]
- Yang, A.; Xiao, B.; Wang, B.; Zhang, B.; Yin, C.; Lv, C.; Pan, D.; Wang, D.; Yan, D.; Yang, F.; et al. Baichuan 2: Open large-scale language models. arXiv 2023, arXiv:2309.10305. [Google Scholar]
- Bai, J.; Bai, S.; Chu, Y.; Cui, Z.; Dang, K.; Deng, X.; Fan, Y.; Ge, W.; Han, Y.; Huang, F.; et al. Qwen technical report. arXiv 2023, arXiv:2309.16609. [Google Scholar]
- Li, X.; Yao, Y.; Jiang, X.; Fang, X.; Meng, X.; Fan, S.; Han, P.; Li, J.; Du, L.; Qin, B.; et al. Flm-101b: An open llm and how to train it with $100 k budget. arXiv 2023, arXiv:2309.03852. [Google Scholar]
- Wei, T.; Zhao, L.; Zhang, L.; Zhu, B.; Wang, L.; Yang, H.; Li, B.; Cheng, C.; Lü, W.; Hu, R.; et al. Skywork: A More Open Bilingual Foundation Model. arXiv 2023, arXiv:2310.19341. [Google Scholar]
- Liao, H.; Shen, H.; Li, Z.; Wang, C.; Li, G.; Bie, Y.; Xu, C. Gpt-4 enhanced multimodal grounding for autonomous driving: Leveraging cross-modal attention with Large Language Models. Commun. Transp. Res. 2024, 4, 100116. [Google Scholar] [CrossRef]
- Chun, S.; Oh, S.J.; De Rezende, R.S.; Kalantidis, Y.; Larlus, D. Probabilistic embeddings for cross-modal retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 8415–8424. [Google Scholar]
- Li, Y.; Qian, Y.; Yu, Y.; Qin, X.; Zhang, C.; Liu, Y.; Yao, K.; Han, J.; Liu, J.; Ding, E. Structext: Structured text understanding with multi-modal transformers. In Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, China, 20–24 October 2021; pp. 1912–1920. [Google Scholar]
- Head, C.B.; Jasper, P.; McConnachie, M.; Raftree, L.; Higdon, G. Large language model applications for evaluation: Opportunities and ethical implications. New Dir. Eval. 2023, 2023, 33–46. [Google Scholar] [CrossRef]
- Thornton, S.M.; Pan, S.; Erlien, S.M.; Gerdes, J.C. Incorporating Ethical Considerations Into Automated Vehicle Control. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1429–1439. [Google Scholar] [CrossRef]
- Robinson, P.; Sun, L.; Furey, H.; Jenkins, R.; Phillips, C.R.M.; Powers, T.M.; Ritterson, R.S.; Xie, Y.; Casagrande, R.; Evans, N.G. Modelling Ethical Algorithms in Autonomous Vehicles Using Crash Data. IEEE Trans. Intell. Transp. Syst. 2022, 23, 7775–7784. [Google Scholar] [CrossRef]
- Bešinović, N.; De Donato, L.; Flammini, F.; Goverde, R.M.P.; Lin, Z.; Liu, R.; Marrone, S.; Nardone, R.; Tang, T.; Vittorini, V. Artificial Intelligence in Railway Transport: Taxonomy, Regulations, and Applications. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14011–14024. [Google Scholar] [CrossRef]
Reference | Focus |
---|---|
Chen et al. [20] | Feedback of ChatGPT and architectural decisions for AD |
Cui et al. [21] | LLMs’ reasoning abilities for high-level decision-making in the context of AD |
Cui et al. [22] | Applications and challenges of multi-modal LLMs for AD |
Deng et al. [23] | Test generation for AD systems based on traffic rules from LLMs |
Dewangan et al. [24] | Integrating large vision–language models and bird’s-eye view maps for AD |
Du et al. [25] | Possible applications, challenges and opportunities of ChatGPT in intelligent vehicles |
Fu et al. [26] | The potential of LLMs for key abilities necessary for AD |
Lei et al. [27] | Benefits and challenges of ChatGPT for connected and autonomous vehicles |
Sha et al. [28] | Combining LLMs and model predictive control for high-level decision-making of AD |
Singh [29] | Elevating real-time decision-making capabilities with ChatGPT in autonomous systems |
Tian et al. [30] | The automatic composing platform with LLMs for end-to-end driving systems |
Wang et al. [31] | LLMs for AD, incorporating safety verifiers for contextual safety learning |
Wen et al. [32] | LLMs-based AD with experiences from real-world datasets and generalization ability |
Xu et al. [33] | LLMs to improve the interpretability of end-to-end AD |
Yang et al. [34] | Overview on state of technological advancements concerning LLMs for AD |
Zhao et al. [35] | Multi-Modal MLL to improve spatial awareness capabilities in industries |
Zhou et al. [36] | Applications and future trends of vision–language models in AD and ITS |
Reference | Focus |
---|---|
Andrade and Walsh [37] | Document classification based on the text in aviation safety reports |
Arteaga and Park [38] | Analyzing underreported crash factors based on traffic crash narratives |
Chandra et al. [39] | Extracting safety concepts by aviation text-data mining |
Cheng et al. [40] | Mining the key information from traffic accident texts |
de Zarzà et al. [41] | Forecasting traffic accidents with the context of autonomous driving |
Dong et al. [42] | Identifying incident causal factors to improve aviation safety |
Jing et al. [43] | Applying multi-label classification on aviation safety reports |
Kierszbaum et al. [44] | Predicting anomalies based on the Aviation Safety Reporting System (ASRS) |
Mumtarin et al. [45] | Comparing the performance of ChatGPT, BARD and GPT-4 in traffic crashes |
Raja et al. [46] | Analyzing ChatGPT in severity investigation of road crashes |
Tikayat Ray et al. [47] | Investigating the potential of ChatGPT in aviation safety analysis |
Yang and Huang [48] | A systematic review of natural language processing (NLP) in aviation safety |
Zheng et al. [49] | Tuning a pre-trained LLM of the open-source LLaMA in transportation safety |
Zheng et al. [50] | Smarter traffic safety decision-making with LLMs |
Ziakkas and Pechlivanis [51] | A comparative analysis of ChatGPT in aviation accident classification |
Reference | Focus |
---|---|
Ali et al. [52] | Impacts of ChatGPT’s personalized travel recommendation on travelers |
Carvalho and Ivanov [53] | Applications, benefits and risks of ChatGPT in tourism |
Demir and Demir [54] | Impacts of ChatGPT on service individualization and value co-creation |
Demir and Demir [55] | Interviewing professionals in tourism industry about ChatGPT |
Dwivedi et al. [56] | Impacts of generative AI on the tourism industry |
Emrullah [57] | Possible contributions of ChatGPT to the tourism sector |
Flores-Cruz et al. [58] | Perceived attitudes and usability with ChatGPT on research and travel |
Goktas and Dirsehan [59] | ChatGPT to optimize customer experience in tourism |
Gursoy et al. [60] | Benefits and potential challenges of ChatGPT in tourism and hospitality |
Harahap et al. [61] | ChatGPT to improve information services in the tourism industry |
Iskender [62] | ChatGPT as an interviewee for the tourism industry and education |
Ivanov and Soliman [63] | Implications of ChatGPT for tourism education and research |
Kim et al. [64] | Impacts of inaccurate information on travelers’ acceptance of suggestions |
Kim et al. [65] | Travelers’ intentions to use ChatGPT and drivers of decision-making |
Mich and Garigliano [66] | ChatGPT’s adoption guidelines and issues in e-tourism |
Nautiyal et al. [67] | Usage of ChatGPT in tourism and interdisciplinary contexts |
Shin et al. [68] | Travelers’ perceptions of ChatGPT when reducing multiple travel options |
Sudirjo et al. [69] | Impacts of ChatGPT on tourists’ information search and decision making |
Wong et al. [70] | ChatGPT’s ability to enhance the tourist decision-making process |
Reference | Focus |
---|---|
Da et al. [71] | Pre-trained LLMs for traffic signal control by learning a more realistic policy |
Das et al. [72] | Classifying pedestrian maneuver types from unstructured textual content |
Driessen et al. [73] | Applying GPT-4V for risk perception in forward-facing traffic images |
Guo et al. [74] | Improving the automatic speech recognition in air traffic control |
Jin et al. [75] | Long-range traffic flow forecasting with a pre-trained model |
Jin et al. [76] | Developing human-like driving styles with a ‘coach agent’ module based on LLMs |
Maynard et al. [77] | Analyzing air traffic management documents for optimizing operations |
Mo et al. [78] | Travel behavior prediction without data-based parameter learning |
Qasemi et al. [79] | Video Question Answering (VidQA) in intelligent traffic monitoring |
Singh [80] | Personalized driver assistance in electric vehicles (EVs) |
Sui et al. [81] | Reboost LLM-based Text-to-SQL for identifying traffic flow patterns |
Tan et al. [82] | LLMs with a transformer-based decoder for dynamic traffic scene generation |
Villarreal et al. [83] | Developing ChatGPT to solve complex mixed traffic control problems |
Wang et al. [84] | Analyzing the information extraction performance of LLMs in air-traffic control |
Wang et al. [85] | Serving as co-pilots for path tracking control and trajectory planning |
Zhang et al. [86] | Performing situational decision-making for traffic monitoring |
Zhang et al. [87] | Different applications of ChatGPT in the domain of intelligent vehicles |
Zhang et al. [88] | Aiding human decision-making in traffic control |
Zhang et al. [89] | Analyzing the spatio-temporal dynamics of traffic across road networks |
Reference | Focus |
---|---|
Agarwal et al. [90] | A knowledge base integration method for question-answering in the aviation domain |
Chew [91] | Enhancing the ability of ChatGPT in aerospace engineering |
Kim and Lee [92] | Analyzing ChatGPT’s answers for transport issues and solutions |
Leong et al. [93] | Developing a transit-topic-related LLM to classify open-ended text |
Nguyen et al. [94] | Providing challenges of AI-based applications in aviation |
Tikayat Ray et al. [95] | Classifying the design, functional, and performance requirements in aviation |
Tikayat Ray et al. [96] | Developing an annotated aerospace corpus and fine-tuned BERT language model |
Voß [97] | Exploring the use of ChatGPT in public transportation |
Wang et al. [98] | A two-stage adapting sentence transformer-based model in the aviation domain |
Wang et al. [99] | Achieving the versatility to tackle NLP problems in the aviation domain |
Yenkikar and Babu [100] | A fine-tuned LLM to polarize customer sentiments automatically |
Chen et al. [101] | Language model to predict customer calling of logistics |
Jackson and Saenz [102] | GPT-3 Codex to develop simulation models for logistics |
Jackson et al. [103] | Human-AI collaboration to model logistics systems |
Kmiecik [104] | Impacts of ChatGPT on third-party logistics operators |
Voß [105] | Applications of ChatGPT within the logistics domain |
Aggarwal [106] | Developments and advancements of ChatGPT in different domains |
Rane [107] | Cross-functional teams with ChatGPT in different industries |
Rice et al. [108] | Capabilities, weaknesses and implications of ChatGPT in technological research |
Wandelt et al. [109] | ChatGPT as an assistant in education and research |
Model | Release Time | Size (B) | Base Model | IT | RLHF | Pre-Train Data Scale | Latest Data Timestamp | Hardware (GPUs / TPUs) | Training Time | ICL | CoT |
---|---|---|---|---|---|---|---|---|---|---|---|
T5 [118] | Oct-2019 | 11 | - | - | - | 1T tokens | Apr-2019 | 1024 TPU v3 | - | ✓ | - |
mT5 [119] | Oct-2020 | 13 | - | - | - | 1T tokens | - | - | - | ✓ | - |
PanGu- [120] | Apr-2021 | 13 | - | - | - | 1.1TB | - | 2048 Ascend 910 | - | ✓ | - |
CPM-2 [121] | Jun-2021 | 198 | - | - | - | 2.6TB | - | - | - | - | - |
T0 [122] | Oct-2021 | 11 | T5 | ✓ | - | - | - | 512 TPU v3 | 27 h | ✓ | - |
CodeGen [123] | Mar-2022 | 16 | - | - | - | 577B tokens | - | - | - | ✓ | - |
GPT-NeoX-20B [124] | Apr-2022 | 20 | - | - | - | 825GB | - | 96 40G A100 | - | ✓ | - |
Tk-Instruct [125] | Apr-2022 | 11 | T5 | ✓ | - | - | - | 256 TPU v3 | 4 h | ✓ | - |
UL2 [126] | May-2022 | 20 | - | - | - | 1T tokens | Apr-2019 | 512 TPU v4 | - | ✓ | ✓ |
OPT [127] | May-2022 | 175 | - | - | - | 180B tokens | - | 992 80G A100 | - | ✓ | - |
NLLB [128] | Jul-2022 | 54.5 | - | - | - | - | - | - | - | ✓ | - |
CodeGeeX [129] | Sep-2022 | 13 | - | - | - | 850B tokens | - | 1536 Ascend 910 | 60 d | ✓ | - |
GLM [130] | Oct-2022 | 130 | - | - | - | 400B tokens | - | 768 40G A100 | 60 d | ✓ | - |
Flan-T5 [131] | Oct-2022 | 11 | T5 | ✓ | - | - | - | - | - | ✓ | ✓ |
BLOOM [132] | Nov-2022 | 176 | - | - | - | 366B tokens | - | 384 80G A100 | 105 d | ✓ | - |
mT0 [133] | Nov-2022 | 13 | mT5 | ✓ | - | - | - | - | - | ✓ | - |
Galactica [134] | Nov-2022 | 120 | - | - | - | 106B tokens | - | - | - | ✓ | ✓ |
BLOOMZ [133] | Nov-2022 | 176 | BLOOM | ✓ | - | - | - | - | - | ✓ | - |
OPT-IML [135] | Dec-2022 | 175 | OPT | ✓ | - | - | - | 128 40G A100 | - | ✓ | ✓ |
LLaMA [136] | Feb-2023 | 65 | - | - | - | 1.4T tokens | - | 2048 80G A100 | 21 d | ✓ | - |
Pythia [137] | Apr-2023 | 12 | - | - | - | 300B tokens | - | 256 40G A100 | - | ✓ | - |
CodeGen2 [138] | May-2023 | 16 | - | - | - | 400B tokens | - | - | - | ✓ | - |
StarCoder [139] | May-2023 | 15.5 | - | - | - | 1T tokens | - | 512 40G A100 | - | ✓ | ✓ |
LLaMA2 [140] | Jul-2023 | 70 | - | ✓ | ✓ | 2T tokens | - | 2000 80G A100 | - | ✓ | - |
Baichuan2 [141] | Sep-2023 | 13 | - | ✓ | ✓ | 2.6T tokens | - | 1024 A800 | - | ✓ | - |
QWEN [142] | Sep-2023 | 14 | - | ✓ | ✓ | 3T tokens | - | - | - | ✓ | - |
FLM [143] | Sep-2023 | 101 | - | ✓ | - | 311B tokens | - | 192 A800 | 22 d | ✓ | - |
Skywork [144] | Oct-2023 | 13 | - | - | - | 3.2T tokens | - | 512 80G A800 | - | ✓ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wandelt, S.; Zheng, C.; Wang, S.; Liu, Y.; Sun, X. Large Language Models for Intelligent Transportation: A Review of the State of the Art and Challenges. Appl. Sci. 2024, 14, 7455. https://doi.org/10.3390/app14177455
Wandelt S, Zheng C, Wang S, Liu Y, Sun X. Large Language Models for Intelligent Transportation: A Review of the State of the Art and Challenges. Applied Sciences. 2024; 14(17):7455. https://doi.org/10.3390/app14177455
Chicago/Turabian StyleWandelt, Sebastian, Changhong Zheng, Shuang Wang, Yucheng Liu, and Xiaoqian Sun. 2024. "Large Language Models for Intelligent Transportation: A Review of the State of the Art and Challenges" Applied Sciences 14, no. 17: 7455. https://doi.org/10.3390/app14177455
APA StyleWandelt, S., Zheng, C., Wang, S., Liu, Y., & Sun, X. (2024). Large Language Models for Intelligent Transportation: A Review of the State of the Art and Challenges. Applied Sciences, 14(17), 7455. https://doi.org/10.3390/app14177455