The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization with 90Y Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropomorphic Voxelized Phantom
2.2. Classical Approaches: Mono-Compartmental Organ Level, Local Energy Deposition, and Convolution with Soft Tissue Voxel S-Values
2.3. Monte Carlo Simulations
2.4. Evaluation of Mean Absorbed Doses and Relative Uncertainties
3. Results
3.1. Monte Carlo’s Uncertainties
3.2. VSV Kernel for Lung Tissue
3.3. Monte Carlo vs. “Classical” Approaches
3.4. Monte Carlo vs. SVOX with the VSV Kernel for the Lung Tissue
3.5. Absorbed Dose Distributions
3.6. Impact on Clinical Decision Making
4. Discussion
- Radiation transport is strongly influenced by the tissue heterogeneities of the lungs, which substantially affect the absorbed dose.
- A lung tissue with a uniform density corresponding to the average density of the case under study is not an accurate descriptor of the real tissue.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Dezarn, W.A.; Cessna, J.T.; DeWerd, L.A.; Feng, W.; Gates, V.L.; Halama, J.; Kennedy, A.S.; Nag, S.; Sarfaraz, M.; Sehgal, V.; et al. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med. Phys. 2011, 38, 4824–4845. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Lam, M.; Chiesa, C.; Konijnenberg, M.; Cremonesi, M.; Flamen, P.; Herrmann, K. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1682–1699. [Google Scholar] [CrossRef] [PubMed]
- Sirtex: SIR-Spheres® Microspheres. Available online: https://www.sirtex.com/ap/products/sir-spheres-y-90-resin-microspheres/about-sir-spheres/approved-indication/ (accessed on 13 August 2024).
- BTG: TheraSphere® Yttrium-90 Glass Microspheres. Available online: https://www.nrc.gov/docs/ML1427/ML14279A535.pdf (accessed on 13 August 2024).
- Levillain, H.; Bagni, O.; Deroose, C.M.; Dieudonné, A.; Gnesin, S.; Grosser, O.S.; Flamen, P. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1570–1584. [Google Scholar] [CrossRef]
- Salem, R.; Padia, S.A.; Lam, M.; Chiesa, C.; Haste, P.; Sangro, B.; Garin, E. Clinical, dosimetric, and reporting considerations for Y-90 glass microspheres in hepatocellular carcinoma: Updated 2022 recommendations from an international multidisciplinary working group. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Roosen, J.; Klaassen, N.J.; Westlund Gotby, L.E.; Overduin, C.G.; Verheij, M.; Konijnenberg, M.W.; Nijsen, J.F.W. To 1000 Gy and back again: A systematic review on dose-response evaluation in selective internal radiation therapy for primary and secondary liver cancer. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3776–3790. [Google Scholar] [CrossRef]
- Ahmed, A.; Stauffer, J.A.; LeGout, J.D.; Burns, J.; Croome, K.; Paz-Fumagalli, R.; Toskich, B. The use of neoadjuvant lobar radioembolization prior to major hepatic resection for malignancy results in a low rate of post hepatectomy liver failure. J. Gastrointest. Oncol. 2021, 12, 751–761. [Google Scholar] [CrossRef]
- Tohme, S.; Sukato, D.; Chen, H.W.; Amesur, N.; Zajko, A.B.; Humar, A.; Tsung, A. Yttrium-90 radioembolization as a bridge to liver transplantation: A single-institution experience. J. Vasc. Interv. Radiol. 2013, 24, 1632–1638. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, G.M. Radiation pneumonitis following Yttrium-90 radioembolization: A Korean multicenter study. Front. Oncol. 2023, 13, 977160. [Google Scholar] [CrossRef]
- Milano, A.; Gil, A.V.; Fabrizi, E.; Cremonesi, M.; Veronese, I.; Gallo, S.; Pacilio, M. In Silico Validation of MCID Platform for Monte Carlo-Based Voxel Dosimetry Applied to 90Y-Radioembolization of Liver Malignancies. Appl. Sci. 2021, 11, 1939. [Google Scholar] [CrossRef]
- Mikell, J.K.; Mahvash, A.; Siman, W.; Mourtada, F.; Kappadath, S.C. Comparing voxel-based absorbed dosimetry methods in tumors, liver, lung, and at the liver-lung interface for (90)Y microsphere selective internal radiation therapy. Eur. J. Nucl. Med. Mol. Imaging Phys. 2015, 2, 16. [Google Scholar] [CrossRef]
- Capotosti, A.; Moretti, R.; Vaccaro, M.; Ribeiro, C.D.A.; Placidi, L.; Nardini, M.; Meffe, G.; Cusumano, D.; Zagaria, L.; De Risi, M.; et al. The Role of Lung Density in the Voxel-Based Dosimetry of 90Y-TARE Evaluated with the Voxel S-Value (VSV) Method and Fast Monte Carlo Simulation. Appl. Sci. 2024, 14, 1019. [Google Scholar] [CrossRef]
- Dieudonné, A.; Hobbs, R.F.; Lebtahi, R.; Maurel, F.; Baechler, S.; Wahl, R.L.; Gardin, I. Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: Comparison between dose kernel convolution and direct Monte Carlo methods. J. Nucl. Med. 2013, 54, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; He, B.; Prideaux, A.; Du, Y.; Frey, E.; Kasecamp, W.; Sgouros, G. Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J. Nucl. Med. 2006, 47, 1985–1994. [Google Scholar]
- Dewaraja, Y.K.; Wilderman, S.J.; Ljungberg, M.; Koral, K.F.; Zasadny, K.; Kaminiski, M.S. Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. J. Nucl. Med. 2005, 46, 840–849. [Google Scholar]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Kikinis, R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reason. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [PubMed]
- Meijering, E.H.W.; Niessen, W.J.; Pluim, J.P.; Viergever, M.A. Quantitative Comparison of Sinc-Approximating Kernels for Medical Image Interpolation. International Conference on Medical Image Computing and Computer-Assisted Intervention. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI’99: Second International Conference, Cambridge, UK, 19–22 September 1999. [Google Scholar]
- ICRU. Tissue Substitutes in Radiation Dosimetry and Measurement; ICRU Report No 44; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1989; Volume 23. [Google Scholar]
- ICRU. Photon, Electron, Proton, and Neutron Interaction Data for Bodytissues; ICRU Report No 46; International Commission on Radiation Units and Measurements: Bethesda, MD, USA, 1992; Volume 24. [Google Scholar]
- Chiesa, C.; Sjogreen-Gleisner, K.; Walrand, S.; Strigari, L.; Flux, G.; Gear, J.; Konijnenberg, M. EANM dosimetry committee series on standard operational procedures: A unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. Eur. J. Nucl. Med. Mol. Imaging Phys. 2021, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Bolch, W.E.; Eckerman, K.F.; Sgouros, G.; Thomas, S.R. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry—Standardization of Nomenclature. J. Nucl. Med. 2009, 50, 477–484. [Google Scholar] [CrossRef]
- Bolch, W.E.; Bouchet, L.G.; Robertson, J.S.; Wessels, B.W.; Siegel, J.A.; Howell, R.W.; MIRD Committee. MIRD pamphlet No. 17: The dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J. Nucl. Med. 1999, 40, 11S–36S. [Google Scholar]
- Lanconelli, N.; Pacilio, M.; Meo, S.L.; Botta, F.; Di Dia, A.; Aroche, L.T.; Cremonesi, M. A free database of radionuclide voxel S values for the dosimetry of nonuniform activity distributions. Phys. Med. Biol. 2012, 57, 517–533. [Google Scholar] [CrossRef]
- Pacilio, M.; Amato, E.; Lanconelli, N.; Basile, C.; Torres, L.A.; Botta, F.; Cremonesi, M. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT. Phys. Med. Biol. 2015, 60, 1945–1964. [Google Scholar] [CrossRef] [PubMed]
- Van Dyk, J.; Keane, T.J.; Rider, W.D. Lung density as measured by computerized tomography: Implications for radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, s1363–s1372. [Google Scholar] [CrossRef]
- Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Morel, C. GATE: A simulation toolkit for PET and SPECT. Phys. Med. Biol. 2004, 49, 4561. [Google Scholar] [CrossRef] [PubMed]
- Chetty, I.J.; Rosu, M.; Kessler, M.L.; Fraass, B.A.; Ten Haken, R.K.; McShan, D.L. Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1249–1259. [Google Scholar] [CrossRef]
- Berger, M.; Coursey, J.; Zucker, M. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (Version 1.21). 1999. Available online: http://physics.nist.gov/Star (accessed on 13 August 2024).
- Chen, G.; Lu, Z.; Jiang, H.; Lin, K.H.; Mok, G.S. Voxel-S-Value based 3D treatment planning methods for Y-90 microspheres radioembolization based on Tc-99m-macroaggregated albumin SPECT/CT. Sci. Rep. 2023, 13, 4020. [Google Scholar] [CrossRef] [PubMed]
- Dodson, C.R.; Marshall, C.; Durieux, J.C.; Wojtylak, P.F.; Davidson, J.C.; Muzic, R.F.; Kardan, A. Using an Assumed Lung Mass Inaccurately Estimates the Lung Absorbed Dose in Patients Undergoing Hepatic 90Yttrium Radioembolization Therapy. CardioVascular Interv. Radiol. 2022, 45, 1793–1800. [Google Scholar] [CrossRef]
- Kappadath, S.C.; Lopez, B.P.; Salem, R.; Lam, M.G.E.H. Reassessment of the lung dose limits for radioembolization. Nucl. Med. Commun. 2021, 42, 1064–1075. [Google Scholar] [CrossRef]
- Auditore, L.; Amato, E.; Boughdad, S.; Meyer, M.; Testart, N.; Cicone, F.; Gnesin, S. Monte Carlo 90Y PET/CT dosimetry of unexpected focal radiation-induced lung damage after hepatic radioembolisation. Phys. Med. Biol. 2020, 65, 235014. [Google Scholar] [CrossRef]
- Plachouris, D.; Tzolas, I.; Gatos, I.; Papadimitroulas, P.; Spyridonidis, T.; Apostolopoulos, D.; Kagadis, G.C. A deep-learning-based prediction model for the biodistribution of 90Y microspheres in liver radioembolization. Med. Phys. 2021, 48, 7427–7438. [Google Scholar] [CrossRef]
- Yu, Q.; Khanjyan, M.; Fidelman, N.; Pillai, A. Contemporary applications of Y90 for the treatment of hepatocellular carcinoma. Hepatol. Commun. 2023, 7, e0288. [Google Scholar] [CrossRef] [PubMed]
- Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Patera, V. Fred: A GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy. Phys. Med. Biol. 2017, 62, 7482–7504. [Google Scholar] [CrossRef] [PubMed]
- Lemaréchal, Y.; Bert, J.; Falconnet, C.; Després, P.; Valeri, A.; Schick, U.; Visvikis, D. GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications. Phys. Med. Biol. 2015, 60, 4987–5006. [Google Scholar] [CrossRef] [PubMed]
- Zeimpekis, K.G.; Mercolli, L.; Conti, M.; Sari, H.; Rominger, A.; Rathke, H. 90Y post-radioembolization clinical assessment with whole-body Biograph Vision Quadra PET/CT: Image quality, tumor, liver and lung dosimetry. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2100–2113. [Google Scholar] [CrossRef]
- Lee, M.S.; Hwang, D.; Kim, J.H.; Lee, J.S. Deep-dose: A voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry. Sci. Rep. 2019, 9, 10308. [Google Scholar] [CrossRef]
- Li, Z.; Fessler, J.A.; Mikell, J.K.; Wilderman, S.J.; Dewaraja, Y.K. DblurDoseNet: A deep residual learning network for voxel radionuclide dosimetry compensating for single-photon emission computerized tomography imaging resolution. Med. Phys. 2022, 49, 1216–1230. [Google Scholar] [CrossRef]
Lung Shunt | |||
---|---|---|---|
Lung Shunt | MIRD (%) | LED (%) | SVOX_ST (%) | SVOX_L (%) |
---|---|---|---|---|
Lung Shunt | MC | MIRD | LED | SVOX_ST | SVOX_L |
---|---|---|---|---|---|
Lung Shunt | Lung_296 (%) | Lung_221 (%) | Lung_L (%) |
---|---|---|---|
Lung Shunt | MC | Lung_296 | Lung_221 | Lung_L |
---|---|---|---|---|
Lung Shunt | (Gy/GBq) | AHASA (GBq) | MLA (GBq) |
---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Andrea, E.; Lanconelli, N.; Cremonesi, M.; Patera, V.; Pacilio, M. The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization with 90Y Microspheres. Appl. Sci. 2024, 14, 7684. https://doi.org/10.3390/app14177684
d’Andrea E, Lanconelli N, Cremonesi M, Patera V, Pacilio M. The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization with 90Y Microspheres. Applied Sciences. 2024; 14(17):7684. https://doi.org/10.3390/app14177684
Chicago/Turabian Styled’Andrea, Edoardo, Nico Lanconelli, Marta Cremonesi, Vincenzo Patera, and Massimiliano Pacilio. 2024. "The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization with 90Y Microspheres" Applied Sciences 14, no. 17: 7684. https://doi.org/10.3390/app14177684
APA Styled’Andrea, E., Lanconelli, N., Cremonesi, M., Patera, V., & Pacilio, M. (2024). The Essential Role of Monte Carlo Simulations for Lung Dosimetry in Liver Radioembolization with 90Y Microspheres. Applied Sciences, 14(17), 7684. https://doi.org/10.3390/app14177684