Double-Exposure Algorithm: A Powerful Approach to Address the Accuracy Issues of Fractional Vegetation Extraction under Shadow Conditions
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Methods
2.2.1. Data Preprocessing
2.2.2. Vegetation Extraction
2.2.3. Accuracy Evaluation
3. Results
3.1. Performance of the Different Extraction Methods under the Double-Exposure Algorithm
3.2. Performance of the Different Double-Exposure Combinations under Varying Shadow Proportions
4. Discussion
4.1. Advantages of Applying the Double-Exposure Algorithm
4.2. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.; Robson, M.; Pilesjo, P. On the ground estimation of vegetation cover in Australian rangelands. Int. J. Remote Sens. 1998, 19, 1815–1820. [Google Scholar] [CrossRef]
- Puente, C.; Olague, G.; Smith, S.V.; Bullock, S.H.; Hinojosa-Corona, A.; Gonzalez-Botello, M.A. A Genetic Programming Approach to Estimate Vegetation Cover in the Context of Soil Erosion Assessment. Photogramm. Eng. Remote Sens. 2011, 77, 363–376. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ju, W.; Chen, J.M.; Ciais, P.; Cescatti, A.; Sardans, J.; Janssens, I.A.; Wu, M.; Berry, J.A.; et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 2020, 370, 1295. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, X.; Zheng, Y.; Hain, C.R.; Ek, M.; Wen, J.; Fang, L.; Liu, J. Improving Noah land surface model performance using near real time surface albedo and green vegetation fraction. Agric. For. Meteorol. 2016, 218–219, 171–183. [Google Scholar] [CrossRef]
- Cui, Y.L.; Sun, H.; Wang, G.X.; Li, C.J.; Xu, X.Y. A Probability-Based Spectral Unmixing Analysis for Mapping Percentage Vegetation Cover of Arid and Semi-Arid Areas. Remote Sens. 2019, 11, 3038. [Google Scholar] [CrossRef]
- Jia, K.; Yang, L.; Liang, S.; Xiao, Z.; Zhao, X.; Yao, Y.; Zhang, X.; Jiang, B.; Liu, D. Long-Term Global Land Surface Satellite (GLASS) Fractional Vegetation Cover Product Derived From MODIS and AVHRR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 508–518. [Google Scholar] [CrossRef]
- Chhabra, S.K. Regional variations in vital capacity in adult males in India: Comparison of regression equations from four regions and impact on interpretation of spirometric data. Indian J. Chest Dis. Allied Sci. 2009, 51, 7–13. [Google Scholar]
- Zeng, X.; Dickinson, R.E.; Walker, A.; Shaikh, M.; Defries, R.S.; Qi, J. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826–839. [Google Scholar] [CrossRef]
- Chen, T.H.; Henderson-Sellers, A.; Milly, P.C.D.; Pitman, A.J.; Beljaars, A.C.M.; Polcher, J.; Abramopoulos, F.; Boone, A.; Chang, S.; Chen, F.; et al. Cabauw experimental results from the Project for Intercomparison of Land-Surface Parameterization Schemes. J. Clim. 1997, 10, 1194–1215. [Google Scholar] [CrossRef]
- Hukkinen, M.; Kaprio, J.; Broms, U.; Viljanen, A.; Kotz, D.; Rantanen, T.; Korhonen, T. Heritability of Lung Function: A Twin Study Among Never-Smoking Elderly Women. Twin Res. Hum. Genet. 2011, 14, 401–407. [Google Scholar] [CrossRef]
- Johnson, B.; Tateishi, R.; Kobayashi, T. Remote Sensing of Fractional Green Vegetation Cover Using Spatially-Interpolated Endmembers. Remote Sens. 2012, 4, 2619–2634. [Google Scholar] [CrossRef]
- Fortis, S.; Corazalla, E.O.; Wang, Q.; Kim, H.J. The Difference Between Slow and Forced Vital Capacity Increases With Increasing Body Mass Index: A Paradoxical Difference in Low and Normal Body Mass Indices. Respir. Care 2015, 60, 113–118. [Google Scholar] [CrossRef]
- Yang, H.-T.; Xu, H.-Q. Assessing fractional vegetation cover changes and ecological quality of the Wuyi Mountain National Nature Reserve based on remote sensing spatial information. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2020, 31, 533–542. [Google Scholar]
- Duncan, J.; Stow, D.; Franklin, J.; Hope, A. Assessing the relationship between spectral vegetation indices and shrub cover in the Jornada Basin, New Mexico. Int. J. Remote Sens. 1993, 14, 3395–3416. [Google Scholar] [CrossRef]
- Yue, J.; Guo, W.; Yang, G.; Zhou, C.; Feng, H.; Qiao, H. Method for accurate multi-growth-stage estimation of fractional vegetation cover using unmanned aerial vehicle remote sensing. Plant Methods 2021, 17, 51. [Google Scholar] [CrossRef] [PubMed]
- Bac, C.W.; Hemming, J.; van Henten, E.J. Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Comput. Electron. Agric. 2013, 96, 148–162. [Google Scholar] [CrossRef]
- Visser, F.; Buis, K.; Verschoren, V.; Schoelynck, J. Mapping of submerged aquatic vegetation in rivers from very high-resolution image data, using object-based image analysis combined with expert knowledge. Hydrobiologia 2018, 812, 157–175. [Google Scholar] [CrossRef]
- Niu, Y.; Han, W.; Zhang, H.; Zhang, L.; Chen, H. Estimating fractional vegetation cover of maize under water stress from UAV multispectral imagery using machine learning algorithms. Comput. Electron. Agric. 2021, 189, 106414. [Google Scholar] [CrossRef]
- Liu, D.; Yang, L.; Jia, K.; Liang, S.; Xiao, Z.; Wei, X.; Yao, Y.; Xia, M.; Li, Y. Global Fractional Vegetation Cover Estimation Algorithm for VIIRS Reflectance Data Based on Machine Learning Methods. Remote Sens. 2018, 10, 1648. [Google Scholar] [CrossRef]
- Lin, X.; Chen, J.; Lou, P.; Yi, S.; Qin, Y.; You, H.; Han, X. Improving the estimation of alpine grassland fractional vegetation cover using optimized algorithms and multi-dimensional features. Plant Methods 2021, 17, 96. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Han, D.; Mu, Y.; Jiang, L.; Yao, X.; Bai, Y.; Lu, Q.; Wang, F. Landscape-level vegetation classification and fractional woody and herbaceous vegetation cover estimation over the dryland ecosystems by unmanned aerial vehicle platform. Agric. For. Meteorol. 2019, 278, 107665. [Google Scholar] [CrossRef]
- Yu, R.; Li, S.; Zhang, B.; Zhang, H. A deep transfer learning method for estimating fractional vegetation cover of sentinel-2 multispectral images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Mahendra, H.; Mallikarjunaswamy, S.; Subramoniam, S.R. An assessment of vegetation cover of Mysuru City, Karnataka State, India, using deep convolutional neural networks. Environ. Monit. Assess. 2023, 195, 526. [Google Scholar] [CrossRef] [PubMed]
- Nijhawan, R.; Sharma, H.; Sahni, H.; Batra, A. A deep learning hybrid CNN framework approach for vegetation cover mapping using deep features. In Proceedings of the 2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Jaipur, India, 4–7 December 2017; IEEE: Piscataway Township, NJ, USA, 2017; pp. 192–196. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Zhou, Q.; Robson, M. Automated rangeland vegetation cover and density estimation using ground digital images and a spectral-contextual classifier. Int. J. Remote Sens. 2001, 22, 3457–3470. [Google Scholar] [CrossRef]
- Wilson, R.O.; Tueller, P.T. Aerial and ground spectral characteristics of rangeland plant communities in Nevada. Remote Sens. Environ. 1987, 23, 177–191. [Google Scholar] [CrossRef]
- Nwagha, U.; Iyare, E.; Anyaehie, U.; Onyedum, C.; Okereke, C.; Ajuzieogu, O.; Amucheazi, A.; Oluboboku, T.; Agu, P.; Igweh, J.; et al. Forced Expiratory Volume in 6 s (FEV6) and FEV1/FEV6 Values as a Viable Alternative for Forced Vital Capacity (FVC) and FEV1/FVC Values During Pregnancy in South East Nigeria: A Preliminary Study. Ann. Med. Health Sci. Res. 2014, 4, 516. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q. Ground truthing, how reliable is it. In Proceedings of the Geoinformatics’ 96 Conference, West Palm Beach, FL, USA, 19–21 November 1996; Citeseer: Sydney, Australia, 1996; pp. 26–28. [Google Scholar]
- Vanha-Majamaa, I.; Salemaa, M.; Tuominen, S.; Mikkola, K. Digitized photographs in vegetation analysis—A comparison of cover estimates. Appl. Veg. Sci. 2000, 3, 89–94. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Lal, R. Soil Erosion Research Methods; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Riegler-Nurscher, P.; Prankl, J.; Bauer, T.; Strauss, P.; Prankl, H. A machine learning approach for pixel wise classification of residue and vegetation cover under field conditions. Biosyst. Eng. 2018, 169, 188–198. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Yuan, Z.; Gao, Y. Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines. Energy 2018, 157, 379–390. [Google Scholar] [CrossRef]
- Melville, B.; Fisher, A.; Lucieer, A. Ultra-high spatial resolution fractional vegetation cover from unmanned aerial multispectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 14–24. (In English) [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Wu, T.; Zhang, H. An analysis of shadow effects on spectral vegetation indexes using a ground-based imaging spectrometer. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2188–2192. [Google Scholar] [CrossRef]
- Suh, H.K.; Hofstee, J.W.; Van Henten, E.J. Improved vegetation segmentation with ground shadow removal using an HDR camera. Precis. Agric. 2018, 19, 218–237. [Google Scholar] [CrossRef]
- Zhou, G.Q.; Liu, S.H. Estimating ground fractional vegetation cover using the double-exposure method. Int. J. Remote Sens. 2015, 36, 6085–6100. [Google Scholar] [CrossRef]
- Mu, X.; Hu, R.; Zeng, Y.; McVicar, T.R.; Ren, H.; Song, W.; Wang, Y.; Casa, R.; Qi, J.; Xie, D.; et al. Estimating structural parameters of agricultural crops from ground-based multi-angular digital images with a fractional model of sun and shade components. Agric. For. Meteorol. 2017, 246, 162–177. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, W.; Xing, J.; Zhang, X.; Tian, H.; Tang, H.; Bi, P.; Li, G.; Zhang, F. Extracting vegetation information from high dynamic range images with shadows: A comparison between deep learning and threshold methods. Comput. Electron. Agric. 2023, 208, 107805. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Zhang, X.; Li, G.; Zhang, F.; Yang, L.; Tian, H.; Zhou, G. Improving Fractional Vegetation Cover Estimation With Shadow Effects Using High Dynamic Range Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1701–1711. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, X.; Zhang, D.; Yang, Y.; Wang, Z. Lightweight Deep Learning Models for High-Precision Rice Seedling Segmentation from UAV-Based Multispectral Images. Plant Phenomics 2023, 5, 0123. [Google Scholar] [CrossRef]
- Yun, C.; Kim, Y.H.; Lee, S.J.; Im, S.J.; Park, K.R. WRA-Net: Wide Receptive Field Attention Network for Motion Deblurring in Crop and Weed Image. Plant Phenomics 2023, 5, 0031. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Guevara, D.; Earles, M. Standardizing and Centralizing Datasets for Efficient Training of Agricultural Deep Learning Models. Plant Phenomics 2023, 5, 0084. [Google Scholar] [CrossRef]
- Yang, L.; Chen, W.; Bi, P.; Tang, H.; Zhang, F.; Wang, Z. Improving vegetation segmentation with shadow effects based on double input networks using polarization images. Comput. Electron. Agric. 2022, 199, 107123. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Yan, G.; Huang, S. Extracting the green fractional vegetation cover from digital images using a shadow-resistant algorithm (SHAR-LABFVC). Remote Sens. 2015, 7, 10425–10443. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, X.; Wang, H.; Yan, G. A novel method for extracting green fractional vegetation cover from digital images. J. Veg. Sci. 2012, 23, 406–418. [Google Scholar] [CrossRef]
- Li, L.; Mu, X.; Macfarlane, C.; Song, W.; Chen, J.; Yan, K.; Yan, G. A half-Gaussian fitting method for estimating fractional vegetation cover of corn crops using unmanned aerial vehicle images. Agric. For. Meteorol. 2018, 262, 379–390. [Google Scholar] [CrossRef]
- Lu, Y.; Song, Z.; Li, Y.; An, Z.; Zhao, L.; Zan, G.; Lu, M. A Novel Desert Vegetation Extraction and Shadow Separation Method Based on Visible Light Images from Unmanned Aerial Vehicles. Sustainability 2023, 15, 2954. [Google Scholar] [CrossRef]
- Cui, S.; Chen, W.; Gu, W.; Yang, L.; Shi, X. SiamC Transformer: Siamese coupling swin transformer Multi-Scale semantic segmentation network for vegetation extraction under shadow conditions. Comput. Electron. Agric. 2023, 213, 108245. [Google Scholar] [CrossRef]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Li, B.; Hao, Z.; Lin, L.; Hu, X.; Zhou, X.; Yu, H.; Xiang, S.; Pascal, M.-L.-F.; et al. A comparative study on the applicability and effectiveness of NSVI and NDVI for estimating fractional vegetation cover based on multi-source remote sensing image. Geocarto Int. 2023, 38, 2184501. [Google Scholar] [CrossRef]
- Xiao, J.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Symeonakis, E.; Korkofigkas, A.; Higginbottom, T.; Boyd, J.; Arnau-Rosalén, E.; Stamou, G.; Karantzalos, K. Towards a Deep Learning Fractional Woody Vegetation Cover Monitoring Framework. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway Township, NJ, USA, 2022; pp. 5905–5908. [Google Scholar]
nor | nor+over1 | nor+over2 | nor+over3 | nor+over4 | nor+over5 | |
---|---|---|---|---|---|---|
mIOU | 0.822 | 0.885 | 0.896 | 0.884 | 0.868 | 0.837 |
IOU | 0.842 | 0.905 | 0.916 | 0.904 | 0.889 | 0.858 |
Accuracy | 0.899 | 0.942 | 0.949 | 0.941 | 0.930 | 0.908 |
Precision | 0.988 | 0.988 | 0.987 | 0.984 | 0.982 | 0.980 |
Recall | 0.853 | 0.917 | 0.928 | 0.919 | 0.905 | 0.874 |
Kappa | 0.790 | 0.868 | 0.882 | 0.866 | 0.847 | 0.809 |
nor | nor+over1 | nor+over2 | nor+over3 | nor+over4 | nor+over5 | |
---|---|---|---|---|---|---|
mIOU | 0.806 | 0.878 | 0.887 | 0.870 | 0.846 | 0.815 |
IOU | 0.825 | 0.899 | 0.909 | 0.891 | 0.868 | 0.835 |
Accuracy | 0.887 | 0.938 | 0.944 | 0.932 | 0.914 | 0.893 |
Precision | 0.985 | 0.988 | 0.985 | 0.982 | 0.979 | 0.977 |
Recall | 0.837 | 0.910 | 0.922 | 0.908 | 0.886 | 0.854 |
Kappa | 0.770 | 0.859 | 0.870 | 0.849 | 0.820 | 0.782 |
nor | nor+over1 | nor+over2 | nor+over3 | nor+over4 | nor+over5 | |
---|---|---|---|---|---|---|
mIOU | 0.871 | 0.907 | 0.924 | 0.930 | 0.927 | 0.927 |
IOU | 0.856 | 0.910 | 0.933 | 0.943 | 0.940 | 0.940 |
Accuracy | 0.935 | 0.961 | 0.970 | 0.973 | 0.972 | 0.972 |
Precision | 0.878 | 0.939 | 0.967 | 0.978 | 0.976 | 0.977 |
Recall | 0.874 | 0.929 | 0.952 | 0.963 | 0.960 | 0.959 |
Kappa | 0.831 | 0.887 | 0.914 | 0.924 | 0.920 | 0.918 |
nor | nor+over1 | nor+over2 | nor+over3 | nor+over4 | nor+over5 | |
---|---|---|---|---|---|---|
mIOU | 0.649 | 0.716 | 0.752 | 0.786 | 0.802 | 0.793 |
IOU | 0.708 | 0.756 | 0.784 | 0.815 | 0.825 | 0.815 |
Accuracy | 0.788 | 0.833 | 0.859 | 0.885 | 0.898 | 0.893 |
Precision | 0.797 | 0.848 | 0.874 | 0.899 | 0.904 | 0.899 |
Recall | 0.870 | 0.880 | 0.890 | 0.903 | 0.910 | 0.905 |
Kappa | 0.533 | 0.636 | 0.690 | 0.738 | 0.760 | 0.752 |
nor | nor+over1 | nor+over2 | nor+over3 | nor+over4 | nor+over5 | |
---|---|---|---|---|---|---|
mIOU | 0.815 | 0.872 | 0.886 | 0.892 | 0.895 | 0.888 |
IOU | 0.837 | 0.894 | 0.906 | 0.910 | 0.912 | 0.906 |
Accuracy | 0.894 | 0.937 | 0.945 | 0.947 | 0.949 | 0.947 |
Precision | 0.945 | 0.964 | 0.968 | 0.969 | 0.972 | 0.974 |
Recall | 0.887 | 0.927 | 0.936 | 0.938 | 0.938 | 0.930 |
Kappa | 0.780 | 0.852 | 0.869 | 0.875 | 0.879 | 0.870 |
Data ID | FVC Ground Truth | nor+over1 | nor+over2 | nor+over3 | nor+over4 | nor+over5 | SHAR-LABFVC |
---|---|---|---|---|---|---|---|
1 | 0.380 | 0.362 | 0.364 | 0.364 | 0.363 | 0.363 | 0.309 |
2 | 0.427 | 0.427 | 0.427 | 0.428 | 0.429 | 0.429 | 0.402 |
3 | 0.439 | 0.436 | 0.437 | 0.437 | 0.437 | 0.437 | 0.417 |
4 | 0.426 | 0.432 | 0.431 | 0.430 | 0.430 | 0.430 | 0.408 |
5 | 0.429 | 0.432 | 0.432 | 0.432 | 0.431 | 0.431 | 0.425 |
6 | 0.210 | 0.213 | 0.213 | 0.213 | 0.213 | 0.213 | 0.209 |
7 | 0.224 | 0.193 | 0.201 | 0.201 | 0.201 | 0.200 | 0.163 |
8 | 0.685 | 0.688 | 0.691 | 0.692 | 0.691 | 0.691 | 0.660 |
9 | 0.653 | 0.653 | 0.651 | 0.651 | 0.651 | 0.651 | 0.640 |
10 | 0.609 | 0.616 | 0.621 | 0.624 | 0.624 | 0.623 | 0.566 |
11 | 0.295 | 0.296 | 0.296 | 0.296 | 0.296 | 0.296 | 0.261 |
12 | 0.505 | 0.497 | 0.499 | 0.498 | 0.498 | 0.499 | 0.473 |
13 | 0.563 | 0.557 | 0.558 | 0.557 | 0.557 | 0.557 | 0.542 |
14 | 0.623 | 0.609 | 0.609 | 0.607 | 0.607 | 0.606 | 0.613 |
nor | nor+over1 | nor+over2 | nor+over3 | nor+over4 | nor+over5 | ||
---|---|---|---|---|---|---|---|
0–40% shadow pixels | mIOU | 0.932 | 0.940 | 0.941 | 0.940 | 0.938 | 0.938 |
IOU | 0.936 | 0.954 | 0.954 | 0.953 | 0.953 | 0.953 | |
Accuracy | 0.973 | 0.979 | 0.979 | 0.979 | 0.978 | 0.978 | |
Precision | 0.960 | 0.981 | 0.982 | 0.982 | 0.981 | 0.982 | |
Recall | 0.950 | 0.971 | 0.971 | 0.971 | 0.970 | 0.970 | |
Kappa | 0.920 | 0.936 | 0.937 | 0.936 | 0.934 | 0.934 |
nor | nor+over1 | nor+over2 | nor+over3 | nor+over4 | nor+over5 | ||
---|---|---|---|---|---|---|---|
40–70% shadow pixels | mIOU | 0.811 | 0.892 | 0.909 | 0.918 | 0.913 | 0.914 |
IOU | 0.793 | 0.901 | 0.923 | 0.937 | 0.931 | 0.931 | |
Accuracy | 0.883 | 0.953 | 0.961 | 0.966 | 0.966 | 0.966 | |
Precision | 0.810 | 0.927 | 0.958 | 0.973 | 0.966 | 0.967 | |
Recall | 0.811 | 0.922 | 0.942 | 0.963 | 0.953 | 0.952 | |
Kappa | 0.756 | 0.865 | 0.893 | 0.908 | 0.899 | 0.900 |
nor | nor+over1 | nor+over2 | nor+over3 | nor+over4 | nor+over5 | ||
---|---|---|---|---|---|---|---|
70–100% shadow pixels | mIOU | 0.755 | 0.823 | 0.891 | 0.914 | 0.911 | 0.906 |
IOU | 0.684 | 0.785 | 0.881 | 0.918 | 0.915 | 0.910 | |
Accuracy | 0.878 | 0.917 | 0.952 | 0.965 | 0.963 | 0.960 | |
Precision | 0.707 | 0.819 | 0.932 | 0.973 | 0.974 | 0.974 | |
Recall | 0.713 | 0.806 | 0.906 | 0.940 | 0.937 | 0.932 | |
Kappa | 0.645 | 0.758 | 0.866 | 0.903 | 0.899 | 0.893 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, W.; Ying, T.; Yang, L. Double-Exposure Algorithm: A Powerful Approach to Address the Accuracy Issues of Fractional Vegetation Extraction under Shadow Conditions. Appl. Sci. 2024, 14, 7719. https://doi.org/10.3390/app14177719
Li J, Chen W, Ying T, Yang L. Double-Exposure Algorithm: A Powerful Approach to Address the Accuracy Issues of Fractional Vegetation Extraction under Shadow Conditions. Applied Sciences. 2024; 14(17):7719. https://doi.org/10.3390/app14177719
Chicago/Turabian StyleLi, Jiajia, Wei Chen, Tai Ying, and Lan Yang. 2024. "Double-Exposure Algorithm: A Powerful Approach to Address the Accuracy Issues of Fractional Vegetation Extraction under Shadow Conditions" Applied Sciences 14, no. 17: 7719. https://doi.org/10.3390/app14177719
APA StyleLi, J., Chen, W., Ying, T., & Yang, L. (2024). Double-Exposure Algorithm: A Powerful Approach to Address the Accuracy Issues of Fractional Vegetation Extraction under Shadow Conditions. Applied Sciences, 14(17), 7719. https://doi.org/10.3390/app14177719