Assessment of the Effectiveness of Vibration Therapy and Passive Rest on the Recovery of Muscular Strength and Plasma Lactate Levels in the Upper Limbs after Intense Anaerobic Exercise in Elite Boxers and Kickboxers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Inclusion and Exclusion Criteria
- Minimum of 8 years of training experience
- No upper limb injuries within the past 6 months
- Active training phase during the preparatory period
- Up-to-date medical examinations
- Injuries affecting upper limb functionality within the past 6 months
- Lack of current medical exams
- Lack of consent to participate
2.4. Biological Regeneration and Allocation
- Biceps Brachii: The therapy was applied for 5 min per arm.
- Triceps Brachii: The therapy was applied for 5 min per arm.
- Deltoid Muscles: The therapy was applied for 5 min per arm.
2.5. Blinding and Allocation Concealment
2.6. Study Procedure
2.6.1. Stage I: Preliminary Measurements
2.6.2. Stage II: Warm-Up
2.6.3. Stage III: Baseline Strength Assessment
2.6.4. Stage IV: Isokinetic Strength Testing
2.6.5. Stage V: Muscle Fatigue Induction
2.6.6. Stage VI: Recovery Interventions
2.7. Plasma Lactate Measurement
2.8. Statistical Analysis
3. Results
3.1. Peak Torque Dynamics (PTQ)
3.2. Acceleration and Reaction Time (T_ACC)
3.3. Muscle Work and Fatigue (WRK_FAT)
3.4. Muscle Strength Balance
3.5. Total Muscle Work (TOT_WRK)
3.6. Physiological Responses—Lactate Levels (LA)
4. Discussion
4.1. Limitations
4.2. Strengths
4.3. Recommendations
5. Conclusions
- The use of post-exercise vibration therapy with variable amplitude and frequency had a more favorable effect on the recovery of elbow joint muscles in the VT group compared to passive rest (PR).
- Vibration therapy applied after predominantly anaerobic exercise positively affected the time to peak torque, acceleration of muscle function recovery, and endurance.
- No significant differences were noted in the level of maximum and relative torque between the two recovery methods.
- Lactate levels (LA) in both studies were similar at various time points of the experiments but significantly differed between trials in both groups. After anaerobic exercise, LA significantly increased from baseline values and then significantly decreased following recovery.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Melton, J.L. Perspectives: How Many Women Have Osteoporosis Now? J. Bone Miner. Res. 1995, 10, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Tung, S.; Iqbal, J. Evolution, Aging, and Osteoporosis. Ann. N. Y. Acad. Sci. 2007, 1116, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Mazzeo, R.S.; Tanaka, H. Exercise Prescription for the Elderly. Sports Med. 2001, 31, 809–818. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Lin, W.; Li, X.; Andersen, L.L.; Wang, Y. Efficacy of Whole Body Vibration Therapy on Pain and Functional Ability in People with Non-Specific Low Back Pain: A Systematic Review. BMC Complement. Med. Ther. 2020, 20, 158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zheng, S.; Li, S.; Zeng, Y.; Chen, L.; Li, G.; Li, S.; He, L.; Chen, S.; Zheng, X.; et al. Efficacy and Safety of Whole-Body Vibration Therapy for Post-Stroke Spasticity: A Systematic Review and Meta-Analysis. Front. Neurol. 2023, 14, 1074922. [Google Scholar] [CrossRef]
- Brown, F.; Gissane, C.; Howatson, G.; van Someren, K.; Pedlar, C.; Hill, J. Compression Garments and Recovery from Exercise: A Meta-Analysis. Sports Med. 2017, 47, 2245–2267. [Google Scholar] [CrossRef]
- Tomlin, D.L.; Wenger, H.A. The Relationship Between Aerobic Fitness and Recovery from High Intensity Intermittent Exercise. Sports Med. 2001, 31, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, Z.; Li, X.; Lai, Z.; Wang, L. Effect of Whole-Body Vibration on Neuromuscular Activation and Explosive Power of Lower Limb: A Systematic Review and Meta-Analysis. PLoS ONE 2022, 17, e0278637. [Google Scholar] [CrossRef]
- Cairns, S.P. Lactic Acid and Exercise Performance. Sports Med. 2006, 36, 279–291. [Google Scholar] [CrossRef]
- Al Masud, A.; Shen, C.-L.; Chyu, M.-C. On the Optimal Whole-Body Vibration Protocol for Muscle Strength. Biomechanics 2022, 2, 547–561. [Google Scholar] [CrossRef]
- Tankisheva, E.; Bogaerts, A.; Boonen, S.; Delecluse, C.; Jansen, P.; Verschueren, S.M.P. Effects of a Six-Month Local Vibration Training on Bone Density, Muscle Strength, Muscle Mass, and Physical Performance in Postmenopausal Women. J. Strength Cond. Res. 2015, 29, 2613–2622. [Google Scholar] [CrossRef]
- Pamukoff, D.N.; Pietrosimone, B.; Lewek, M.D.; Ryan, E.D.; Weinhold, P.S.; Lee, D.R.; Blackburn, J.T. Whole-Body and Local Muscle Vibration Immediately Improve Quadriceps Function in Individuals With Anterior Cruciate Ligament Reconstruction. Arch. Phys. Med. Rehabil. 2016, 97, 1121–1129. [Google Scholar] [CrossRef]
- El-Shamy, S. Effect of Whole Body Vibration Training on Quadriceps Strength, Bone Mineral Density, and Functional Capacity in Children with Hemophilia: A Randomized Clinical Trial. J. Musculoskelet. Neuronal Interact. 2017, 17, 19–26. [Google Scholar]
- Bakhtiary, A.H.; Safavi-Farokhi, Z.; Aminian-Far, A. Influence of Vibration on Delayed Onset of Muscle Soreness Following Eccentric Exercise. Br. J. Sports Med. 2007, 41, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, S.; Rousseau, J.J.; Thorp, R.M.; Choate, S.L.; Jackson, F.S.; Rowlands, D.S. Vibration Therapy Reduces Plasma IL6 and Muscle Soreness after Downhill Running. Br. J. Sports Med. 2010, 44, 888–894. [Google Scholar] [CrossRef]
- Aminian-Far, A.; Hadian, M.-R.; Olyaei, G.; Talebian, S.; Bakhtiary, A.H. Whole-Body Vibration and the Prevention and Treatment of Delayed-Onset Muscle Soreness. J. Athl. Train. 2011, 46, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Imtiyaz, S.; Veqar, Z.; Shareef, M.Y. To Compare the Effect of Vibration Therapy and Massage in Prevention of Delayed Onset Muscle Soreness (DOMS). J. Clin. Diagn. Res. 2014, 8, 133. [Google Scholar] [CrossRef] [PubMed]
- Marin, P.J.; Zarzuela, R.; Zarzosa, F.; Herrero, A.J.; Garatachea, N.; Rhea, M.R.; García-López, D. Whole-Body Vibration as a Method of Recovery for Soccer Players. Eur. J. Sport Sci. 2012, 12, 2–8. [Google Scholar] [CrossRef]
- Remer, F.; Keilani, M.; Kull, P.; Crevenna, R. Effects of Whole-Body Vibration Therapy on Pain, Functionality, Postural Stability, and Proprioception in Patients with Subacute and Chronic Non-Specific Low Back Pain: A Systematic Review. In Wiener Medizinische Wochenschrift; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Chwała, W.; Pogwizd, P.; Rydzik, Ł.; Ambroży, T. Effect of Vibration Massage and Passive Rest on Recovery of Muscle Strength after Short-Term Exercise. Int. J. Environ. Res. Public Health 2021, 18, 11680. [Google Scholar] [CrossRef]
- Chwała, W.; Pogwizd, P. Effects of Vibration and Passive Resting on Muscle Stiffness and Restitution after Submaximal Exercise Analyzed by Elastography. Acta Bioeng. Biomech. 2021, 23, 3–11. [Google Scholar] [CrossRef]
- Piotrowska, A.; Pilch, W.; Tota, Ł.; Maciejczyk, M.; Mucha, D.; Bigosińska, M.; Bujas, P.; Wiecha, S.; Sadowska-Krępa, E.; Pałka, T. Local Vibration Reduces Muscle fatigue after Prolonged Exercise in Men. J. Clin. Med. 2021, 10, 5461. [Google Scholar] [CrossRef]
- Liu, C.; Wu, X.; Vulugundam, G.; Gokulnath, P.; Li, G.; Xiao, J. Exercise Promotes Tissue Regeneration: Mechanisms Involved and Therapeutic Scope. Sports Med. Open 2023, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.J.; Perry, B.G.; Mündel, T.; Cochrane, D.J. The Effects of Vibration Therapy on Muscle Force Loss Following Eccentrically Induced Muscle fatigue. Eur. J. Appl. Physiol. 2012, 112, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Chapman, D.W.; Newton, M.; Mcguigan, M.; Nosaka, K. Effect of Lengthening Contraction Velocity on Muscle fatigue of the Elbow Flexors. Med. Sci. Sports Exerc. 2008, 40, 926–933. [Google Scholar] [CrossRef]
- Merrigan, J.; Tynan, M.; Oliver, J.; Jagim, A.; Jones, M. Effect of Post-Exercise Whole Body Vibration with Stretching on Mood State, Fatigue, and Soreness in Collegiate Swimmers. Sports 2017, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Akehurst, H.; Grice, J.E.; Angioi, M.; Morrissey, D.; Migliorini, F.; Maffulli, N. Whole-Body Vibration Decreases Delayed Onset Muscle Soreness Following Eccentric Exercise in Elite Hockey Players: A Randomised Controlled Trial. J. Orthop. Surg. Res. 2021, 16, 589. [Google Scholar] [CrossRef] [PubMed]
- Dabbs, N.C. Effects Of Whole Body Vibration On Vertical Jump Performance Following Exercise Induced Muscle fatigue. Int. J. Kinesiol. Sports Sci. 2014, 2, 23–30. [Google Scholar] [CrossRef]
- Chwała, W.; Wąsacz, W.; Rydzik, Ł.; Mirek, W.; Snopkowski, P.; Pałka, T.; Ambroży, T. Special Boxing Fitness Test: Validation Procedure. Arch. Budo Sci. Martial Arts Extrem. Sports 2023, 19, 41–50. [Google Scholar]
- Padulo, J.; Di Giminiani, R.; Ibba, G.; Zarrouk, N.; Moalla, W.; Attene, G.M.; Migliaccio, G.; Pizzolato, F.; Bishop, D.; Chamari, K. The Acute Effect of Whole Body Vibration on Repeated Shuttle-Running in Young Soccer Players. Int. J. Sports Med. 2013, 35, 49–54. [Google Scholar] [CrossRef]
- Amaral, G.M.; Marinho, H.V.R.; Ocarino, J.M.; Silva, P.L.P.; de Souza, T.R.; Fonseca, S.T. Muscular Performance Characterization in Athletes: A New Perspective on Isokinetic Variables. Braz. J. Phys. Ther. 2014, 18, 521–529. [Google Scholar] [CrossRef]
- Chen, W.-L.; Su, F.-C.; Chou, Y.-L. Significance of Acceleration Period in a Dynamic Strength Testing Study. J. Orthop. Sports Phys. Ther. 1994, 19, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Jaric, S. Changes in Movement Symmetry Associated With Strengthening and Fatigue of Agonist and Antagonist Muscles. J. Mot. Behav. 2000, 32, 9–15. [Google Scholar] [CrossRef]
- van Cingel, R.; Kleinrensink, G.; Stoeckart, R.; Aufdemkampe, G.; de Bie, R.; Kuipers, H. Strength Values of Shoulder Internal and External Rotators in Elite Volleyball Players. J. Sport Rehabil. 2006, 15, 236–245. [Google Scholar] [CrossRef]
- Gillet, B.; Begon, M.; Diger, M.; Berger-Vachon, C.; Rogowski, I. Shoulder Range of Motion and Strength in Young Competitive Tennis Players with and without History of Shoulder Problems. Phys. Ther. Sport 2018, 31, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Dias, S.B.; Seluianov, V.N.; Vieira, F.S.; Junior, J.C.; Michailoff, P.R. Soccer: Special Methodological Preparation Topics for Athletes; Juruá: Curitiba, Brazil, 2016; p. 200. [Google Scholar]
- Yang, S.; Chen, C.; Du, S.; Tang, Y.; Li, K.; Yu, X.; Tan, J.; Zhang, C.; Rong, Z.; Xu, J.; et al. Assessment of Isokinetic Trunk Muscle Strength and Its Association with Health-Related Quality of Life in Patients with Degenerative Spinal Deformity. BMC Musculoskelet. Disord. 2020, 21, 827. [Google Scholar] [CrossRef] [PubMed]
- Ruas, C.V.; Minozzo, F.; Pinto, M.D.; Brown, L.E.; Pinto, R.S. Lower-Extremity Strength Ratios of Professional Soccer Players According to Field Position. J. Strength Cond. Res. 2015, 29, 1220–1226. [Google Scholar] [CrossRef]
Average | Min | Max | SD | |
---|---|---|---|---|
Body Mass (BM) [kg] | 76.0 | 52 | 90 | 9.67 |
Body Height (BH) [cm] | 178.3 | 165 | 189 | 7.77 |
Body Mass Index (BMI) [kg/m2] | 23.9 | 18 | 28 | 2.66 |
Age [years] | 23.0 | 19 | 32 | 5.81 |
Fat [%] | 10.4 | 5 | 21 | 3.73 |
Total Body Water (TBW) [%] | 62.9 | 56 | 67 | 3.04 |
Variables | Average | p | Min | Max | SD | ||||
---|---|---|---|---|---|---|---|---|---|
LBV | PR | LBV | PR | LBV | PR | LBV | PR | ||
Peak Torque Right Extensors (PTQ REXT) [Nm] | 56 | 58 | 0.26019 | 32 | 34 | 85 | 79 | 11.1 | 11.0 |
Peak Torque Left Extensors (PTQ LEXT) [Nm] | 58 | 60 | 0.63567 | 29 | 30 | 88 | 88 | 14.9 | 14.7 |
Peak Torque Right Flexors (PTQ RFLEX) [Nm] | 47 | 45 | 0.18479 | 31 | 29 | 70 | 73 | 9.0 | 10.0 |
Peak Torque Left Flexors (PTQ LFLEX) [Nm] | 45 | 46 | 0.85424 | 28 | 30 | 64 | 69 | 9.0 | 10.1 |
Peak Torque to Body Weight Right Extensors (PTQ_BW REXT) [%] | 74 | 77 | 0.05253 | 50 | 59 | 95 | 96 | 9.9 | 9.4 |
Peak Torque to Body Weight Left Extensors (PTQ_BW LEXT) [%] | 76 | 79 | 0.37649 | 53 | 51 | 100 | 109 | 13.2 | 13.8 |
Peak Torque to Body Weight Right Flexors (PTQ_BW RFLEX) [%] | 63 | 61 | 0.17405 | 43 | 39 | 105 | 90 | 12.3 | 12.4 |
Peak Torque to Body Weight Left Flexors (PTQ_BW LFLEX) [%] | 59 | 61 | 0.76688 | 41 | 38 | 86 | 91 | 10.4 | 11.6 |
Time to Peak Torque Right Extensors (T_PTQ REXT) [ms] | 331 | 363 | 0.11361 | 10 | 10 | 440 | 460 | 106.1 | 91.6 |
Time to Peak Torque Left Extensors (T_PTQ LEXT) [ms] | 353 | 347 | 0.53673 | 10 | 160 | 790 | 440 | 116.8 | 66.1 |
Time to Peak Torque Right Flexors (T_PTQ RFLEX) [ms] | 347 | 405 | 0.12209 | 60 | 190 | 610 | 660 | 137.3 | 126.0 |
Time to Peak Torque Left Flexors (T_PTQ LFLEX) [ms] | 364 | 444 | 0.00759 | 50 | 60 | 650 | 760 | 139.0 | 133.3 |
Work to Body Weight Right Extensors (WRK_BW REXT) [J] | 88 | 96 | 0.10068 | 61 | 66 | 118 | 127 | 14.0 | 16.5 |
Work to Body Weight Left Extensors (WRK_BW LEXT) [J] | 90 | 96 | 0.23203 | 62 | 59 | 122 | 130 | 17.5 | 17.9 |
Work to Body Weight Right Flexors (WRK_BW RFLEX) [J] | 85 | 89 | 0.92173 | 60 | 37 | 119 | 135 | 18.4 | 23.2 |
Work to Body Weight Left Flexors (WRK_BW LFLEX) [J] | 87 | 89 | 0.97878 | 57 | 41 | 117 | 170 | 18.9 | 24.7 |
Total Work Right Extensors (TOT_WVRK REXT) [J] | 360 | 402 | 0.01711 | 214 | 194 | 535 | 578 | 78.4 | 92.0 |
Total Work Left Extensors (TOT_WRK LEXT) [J] | 372 | 401 | 0.36831 | 205 | 234 | 621 | 637 | 107.6 | 103.7 |
Total Work Right Flexors (TOT_WRK RFLEX) [J] | 364 | 381 | 0.96800 | 197 | 144 | 553 | 615 | 100.5 | 115.0 |
Total Work Left Flexors (TOT_WRK LFLEX) [J] | 374 | 377 | 0.70304 | 199 | 168 | 598 | 596 | 107.0 | 112.5 |
Average Power Right Extensors (AVG_POW REXT) [W] | 103 | 110 | 0.11749 | 63 | 62 | 145 | 154 | 20.7 | 21.7 |
Average Power Left Extensors (AVG_POW LEXT) [W] | 104 | 111 | 0.41284 | 54 | 68 | 151 | 165 | 26.4 | 25.4 |
Average Power Right Flexors (AVG_POW RFLEX) [W] | 103 | 99 | 0.23974 | 58 | 34 | 152 | 157 | 24.8 | 29.6 |
Average Power Left Flexors (AVG_POW LFLEX) [W] | 103 | 100 | 0.29445 | 53 | 47 | 157 | 156 | 27.0 | 28.4 |
Average Peak Torque Right Extensors (AVG_PTQ REXT) [Nm] | 51 | 54 | 0.17709 | 29 | 31 | 80 | 76 | 11.6 | 11.2 |
Average Peak Torque Left Extensors (AVG_PTQ LEXT) [Nm] | 52 | 55 | 0.38166 | 27 | 28 | 84 | 84 | 14.9 | 14.3 |
Average Peak Torque Right Flexors (AVG_PTQ RFLEX) [Nm] | 44 | 43 | 0.32650 | 29 | 26 | 65 | 70 | 8.5 | 9.5 |
Average Peak Torque Left Flexors (AVG_PTQ LFLEX) [Nm] | 42 | 43 | 0.74334 | 25 | 28 | 63 | 64 | 9.2 | 9.3 |
Acceleration Time Right Extensors (T_ACC REXT) [ms] | 110 | 116 | 0.36894 | 10 | 80 | 160 | 170 | 25.8 | 21.0 |
Acceleration Time Left Extensors (T_ACC LEXT) [ms] | 126 | 112 | 0.99721 | 80 | 80 | 660 | 150 | 91.2 | 17.5 |
Acceleration Time Right Flexors (T_ACC RFLEX) [ms] | 172 | 197 | 0.00947 | 120 | 120 | 250 | 360 | 36.4 | 56.5 |
Acceleration Time Left Flexors (T_ACC LFLEX) [ms] | 173 | 195 | 0.04203 | 120 | 120 | 330 | 570 | 40.4 | 72.8 |
Deceleration Time Right Extensors (T_DEC REXT) [ms] | 238 | 233 | 0.89468 | 140 | 180 | 430 | 350 | 62.7 | 37.8 |
Deceleration Time Left Extensors (T_DEC LEXT) [ms] | 246 | 232 | 0.57064 | 180 | 180 | 460 | 370 | 59.0 | 41.8 |
Deceleration Time Right Flexors (T_DEC RFLEX) [ms] | 156 | 158 | 0.90776 | 90 | 90 | 260 | 240 | 42.1 | 36.6 |
Deceleration Time Left Flexors (T_DEC LFLEX) [ms] | 160 | 169 | 0.38700 | 100 | 90 | 290 | 260 | 39.6 | 39.3 |
Agonist to Antagonist Ratio Right (AGN_ANT RAT RIGHT) [%] | 86 | 80 | 0.01835 | 57 | 56 | 136 | 117 | 17.2 | 17.9 |
Agonist to Antagonist Ratio Left (AGN_ANT RAT LEFT) [%] | 80 | 80 | 0.54263 | 57 | 49 | 137 | 117 | 17.6 | 15.1 |
Work Fatigue Right Extensors (LBV_WRK_FAT REXT) [J/J] | −4.5 | 5.4 | 0.0044 | −31.2 | −34.2 | 26.0 | 32.4 | 11 | 11 |
Work Fatigue Left Extensors (LBV_WRK_FAT LEXT) [J/J] | −3.8 | 5.6 | 0.0012 | −37.8 | −7.4 | 42.2 | 13.8 | 16 | 6 |
Work Fatigue Right Flexors (LBV_WRK_FAT RFLEX) [J/J] | 1.8 | 4.8 | 0.13268 | −26.8 | −13.9 | 20.8 | 24.2 | 10 | 7 |
Work Fatigue Left Flexors (LBV_WRK_FAT LFLEX) [J/J] | 5.3 | 5.1 | 0.24539 | −16.4 | −12.9 | 13.0 | 18.3 | 7 | 8 |
Lactate (LA) [mmol] | 5.2 | 5.3 | 0.91672 | 0.5 | 0.5 | 14.8 | 12.5 | 4.5 | 4.2 |
Relative SBFT Index [bmp/Nkg−1] | 2.42 | 2.42 | 0.74882 | 2.02 | 1.99 | 3.66 | 3.49 | 0.44 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chwała, W.; Mirek, W.; Ambroży, T.; Wąsacz, W.; Jakubowska, K.; Rydzik, Ł. Assessment of the Effectiveness of Vibration Therapy and Passive Rest on the Recovery of Muscular Strength and Plasma Lactate Levels in the Upper Limbs after Intense Anaerobic Exercise in Elite Boxers and Kickboxers. Appl. Sci. 2024, 14, 7820. https://doi.org/10.3390/app14177820
Chwała W, Mirek W, Ambroży T, Wąsacz W, Jakubowska K, Rydzik Ł. Assessment of the Effectiveness of Vibration Therapy and Passive Rest on the Recovery of Muscular Strength and Plasma Lactate Levels in the Upper Limbs after Intense Anaerobic Exercise in Elite Boxers and Kickboxers. Applied Sciences. 2024; 14(17):7820. https://doi.org/10.3390/app14177820
Chicago/Turabian StyleChwała, Wiesław, Wacław Mirek, Tadeusz Ambroży, Wojciech Wąsacz, Klaudia Jakubowska, and Łukasz Rydzik. 2024. "Assessment of the Effectiveness of Vibration Therapy and Passive Rest on the Recovery of Muscular Strength and Plasma Lactate Levels in the Upper Limbs after Intense Anaerobic Exercise in Elite Boxers and Kickboxers" Applied Sciences 14, no. 17: 7820. https://doi.org/10.3390/app14177820
APA StyleChwała, W., Mirek, W., Ambroży, T., Wąsacz, W., Jakubowska, K., & Rydzik, Ł. (2024). Assessment of the Effectiveness of Vibration Therapy and Passive Rest on the Recovery of Muscular Strength and Plasma Lactate Levels in the Upper Limbs after Intense Anaerobic Exercise in Elite Boxers and Kickboxers. Applied Sciences, 14(17), 7820. https://doi.org/10.3390/app14177820