Ridged Apertures for LEO Direct Radiating Arrays in Ka-Band
Abstract
:1. Introduction
2. Array Design for LEO
3. Waveguide Design: Cut-Off Analyses
3.1. Quadridge Waveguide
3.2. Hexagonal Ridged Waveguides
4. Aperture Design: Parametric Analyses and Performance Evaluation
4.1. Quadridge Radiating Elements
4.2. Hexagonal Ridged Radiating Elements
4.3. Performance Comparison
5. Comparison between Infinite and Finite Approaches
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LEO | Low Earth Orbit |
LoS | Line of Sight |
SatCom | Satellite Communications |
DRA | Direct Radiating Array |
EQA | Evanescent Quadridge Antenna |
ARC | Active Reflection Coefficient |
XPD | Cross-Polar Discrimination |
BFN | Beamforming network |
TE | Transverse Electric |
TM | Transverse Magnetic |
RH | Right Hand |
LH | Left Hand |
PML | Perfect Matched Layer |
AEP | Active Element Pattern |
EEP | Embedded Element Pattern |
References
- Giordani, M.; Zorzi, M. Non-Terrestrial Networks in the 6G Era: Challenges and Opportunities. IEEE Netw. 2021, 35, 244–251. [Google Scholar] [CrossRef]
- Rao, S.K. Advanced Antenna Technologies for Satellite Communications Payloads. IEEE Trans. Antennas Propag. 2015, 63, 1205–1217. [Google Scholar] [CrossRef]
- Lafond, J.C.; Vourch, E.; Delepaux, F.; Lepeltier, P.; Bosshard, P.; Dubos, F.; Feat, C.; Labourdette, C.; Navarre, G.; Bassaler, J.M. Thales Alenia Space multiple beam antennas for telecommunication satellites. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP), The Hague, The Netherlands, 6–11 April 2014. [Google Scholar]
- Araniti, G.; Iera, A.; Pizzi, S.; Rinaldi, F. Toward 6G Non-Terrestrial Networks. IEEE Netw. 2022, 36, 113–120. [Google Scholar] [CrossRef]
- Polo-López, L.; Menargues, E.; Capdevila, S.; Toso, G.; García-Vigueras, M. Solving Sub-Wavelength Lattice Reduction in Full-Metal Front-Ends for Dual-Polarized Active Antennas. IEEE Trans. Antennas Propag. 2022, 70, 7413–7426. [Google Scholar] [CrossRef]
- Vásquez-Peralvo, J.A.; Querol, J.; Ortíz, F.; Rios, J.L.G.; Lagunas, E.; Baeza, V.M.; Fontanesi, G.; Garcés-Socorrás, L.M.; Duncan, J.C.M.; Chatzinotas, S. Flexible Beamforming for Direct Radiating Arrays in Satellite Communications. IEEE Access 2023, 11, 79684–79696. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Z.; Zeng, J.; Guan, F.; Liu, X.; Zi, J. Scan Blindness Free Design of Wideband Wide-Scanning Open-Ended Waveguide Phased Array. IEEE Access 2021, 9, 68127–68138. [Google Scholar] [CrossRef]
- Kähkönen, H.; Ala-Laurinaho, J.; Viikari, V. A Modular Dual-Polarized Ka-Band Vivaldi Antenna Array. IEEE Access 2022, 10, 36362–36372. [Google Scholar] [CrossRef]
- Kindt, R.W.; Logan, J.T. Benchmarking Ultrawideband Phased Antenna Arrays: Striving for Clearer and More Informative Reporting Practices. IEEE Antennas Propag. Mag. 2018, 60, 34–37. [Google Scholar] [CrossRef]
- Barka, A.; Cabral, A.D.O.; Dorlé, A. Manufacture and Measurement of Circularly Polarized Ka-Band Radiating Elements for SatCom Wide-Angle Phased Arrays Tiles. In Proceedings of the 2023 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Venice, Italy, 9–13 October 2023. [Google Scholar]
- Gorski, P.; Vigano, M.C.; del Rio, D.L. Developments on phased array for low-cost, high frequency applications. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017. [Google Scholar]
- Jaschke, T.; Mitto, H.K.; Jacob, A.F. An SIW fed dual-band and dual-polarized lens antenna at K/Ka-band. In Proceedings of the 2017 47th European Microwave Conference (EuMC), Nuremberg, Germany, 10–12 October 2017. [Google Scholar]
- Montgomery, J. Ridged waveguide phased array elements. IEEE Trans. Antennas Propag. 1976, 24, 46–53. [Google Scholar] [CrossRef]
- Radiofrequency Module, by SWISSTO12 SA and E. Menargues Gomez. (5 December 2019). European Patent EP3804023A1 [Online]. Available online: https://worldwide.espacenet.com/patent/search/family/065023945/publication/EP3804034A1?q=EP3804034A1 (accessed on 28 June 2024).
- Montoya-Roca, R.; Vazquez-Sogorb, C.; Virone, G.; Addamo, G. Array Elements for LEO SatCom Payloads. In Proceedings of the 2023 IEEE Conference on Antenna Measurements and Applications (CAMA), Genoa, Italy, 15–17 November 2023. [Google Scholar]
- Vazquez-Sogorb, C.; Montoya-Roca, R.; Addamo, G.; Peverini, O.; Virone, G. Multi-Beam Arrays for Future LEO SatCom Payloads. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024. [Google Scholar]
- Menargues, E.; García-Vigueras, M.; Capdevila, S.; Angeletti, P.; Toso, G. Meandered Waveguides for Active Antennas. In Proceedings of the 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021. [Google Scholar]
- Antenna Source for an Array Antenna with Direct Radiation, Radiating Panel and Antenna Comprising a Plurality of Antenna Sources by THALES SA, T. Girard, M. Etcharren and A. Cot. (2022, Jun. 15). European Patent EP4012834A1 [Online]. Available online: https://worldwide.espacenet.com/patent/search/family/075850247/publication/EP4012834A1?q=EP4012834A1 (accessed on 28 June 2024).
- Dicandia, F.A.; Genovesi, S. Exploitation of Triangular Lattice Arrays for Improved Spectral Efficiency in Massive MIMO 5G Systems. IEEE Access 2021, 9, 17530–17543. [Google Scholar] [CrossRef]
- Haupt, R.L. Array Factor Analysis. In Antenna Arrays: A Computational Approach; Wiley-IEEE Press: Hoboken, NJ, USA, 2010. [Google Scholar]
- Addamo, G.; Peverini, O.A.; Calignano, F.; Manfredi, D.; Paonessa, F.; Virone, G.; Dassano, G. 3-D Printing of High-Performance Feed Horns from Ku- to V-Bands. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2036–2040. [Google Scholar] [CrossRef]
- Anderson, T.N. Rectangular and Ridge Waveguide. IRE Trans. Microw. Theory Tech. 1956, 4, 201–209. [Google Scholar] [CrossRef]
- Helszajn, J. The ridge waveguide. In Ridge Waveguides and Passive Microwave Components; Electromagnetic Waves; Institution of Engineering and Technology: Stevenage, UK, 2000; pp. 1–12. [Google Scholar]
- Sirci, S.; Menargues, E.; Billod, M. Space-qualified Additive Manufacturing and its Application to Active Antenna Harmonic Filters. In Proceedings of the IEEE MTT-S International Microwave Filter Workshop (IMFW), Perugia, Italy, 17–19 November 2021. [Google Scholar]
- Dassault Systemes. CST Studio Suite: High Frequency Simulation. Available online: https://space.mit.edu/RADIO/Documentation/CST%20Studio%20Suite%20-%20High%20Frequency%20Simulation.pdf (accessed on 28 June 2024).
- Addamo, G.; Peverini, O.A.; Manfredi, D.; Calignano, F.; Paonessa, F.; Virone, G.; Tascone, R.; Dassano, G. Additive Manufacturing of Ka-Band Dual-Polarization Waveguide Components. IEEE Trans. Microw. Theory Tech. 2018, 66, 3589–3596. [Google Scholar] [CrossRef]
- Sun, W.; Balanis, C.A. Analysis and design of quadruple-ridged waveguides. IEEE Trans. Microw. Theory Tech. 1994, 42, 2201–2207. [Google Scholar] [CrossRef]
- Peverini, O.A.; Addamo, G.; Virone, G.; Tascone, R.; Orta, R. A Spectral-Element Method for the Analysis of 2-D Waveguide Devices with Sharp Edges and Irregular Shapes. IEEE Trans. Microw. Theory Tech. 2011, 59, 1685–1695. [Google Scholar] [CrossRef]
- Radiofrequency Component Having a Plurality of Waveguide Devices Provided with Ridges, by SWISSTO12 SA, E. Menargues Gomez, T. Debogovic, S. Capdevila Cascante and E. De Rijk. (2020, Oct. 01). European Patent EP3824511A1 [Online]. Available online: https://worldwide.espacenet.com/patent/search/family/067441407/publication/EP3824511A1?q=EP3824511A1 (accessed on 28 June 2024).
- Orta, R.; Savi, I.P.; Tascone, R. Numerical Green’s function technique for the analysis of screens perforated by multiply connected apertures. IEEE Trans. Antennas Propag. 1996, 44, 765–776. [Google Scholar] [CrossRef]
- Virone, G.; Peverini, O.A.; Lumia, M.; Farooqui, M.Z.; Addamo, G.; Tascone, R. W-Band Orthomode Transducer for Dense Focal-Plane Clusters. IEEE Microw. Wirel. Components Lett. 2015, 25, 85–87. [Google Scholar] [CrossRef]
- Bhattacharyya, A. Introduction to Floquet Modes in Infinite Arrays. In Phased Array Antennas: Floquet Analysis, Synthesis, BFNs, and Active Array Systems; Wiley-Interscience; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 61–83. [Google Scholar]
- ANSYS, Inc. Getting Started with HFSS: Floquet Ports. Release 2020 R2—July 2020. Available online: https://www.oldfriend.url.tw/Tutorials/Ansoft/hfss/HFSS%20Floquet%20Ports.pdf (accessed on 28 June 2024).
- Bhattacharyya, A. Finite Array Analysis Using Infinite Array Results: Mutual Coupling Formulation. In Phased Array Antennas: Floquet Analysis, Synthesis, BFNs, and Active Array Systems; Wiley-Interscience; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 129–135. [Google Scholar]
Parameter | Description | Values (mm) |
---|---|---|
P | Period | 7.8 |
a | Aperture side | 6.8 |
Ridge height | 1.5 | |
Ridge width | 1 | |
Evanescent section length | 1 |
Parameter | Description | Values (mm) |
---|---|---|
P | Period | 9 |
a | Aperture side | 8 |
Ridge height (three ridges) | 1.75 | |
Ridge width (three ridges) | 1 | |
Ridge height (six ridges) | 1.7 | |
Ridge width (six ridges) | 1 |
Radiating Element | Lattice | BW (%) | Scan Angle, (°) | S11 (dB) | S21 (dB) | Scan Loss (dB) | XPD (dB) |
---|---|---|---|---|---|---|---|
Evanescent quadridge [5] | Square | 4.5 | 0 | −40 | −12 | - | 40 |
30 | −15 | −13 | 1 | 15 | |||
40 | −12 | −9 | 1 | 10 | |||
50 | −10 | −6 | 2 | 8 | |||
60 | NA | NA | NA | NA | |||
Square | 13.2 | 0 | −53 | −4 | - | 40 | |
30 | −11 | −6 | 2 | 12 | |||
40 | −9 | −6 | 2 | 7 | |||
50 | −4 | −6 | 8 | 0 | |||
60 | −3 | −7 | 7 | 6 | |||
Square | 13.2 | 0 | −41 | −3 | - | 40 | |
30 | −18 | −4 | 1 | 23 | |||
40 | −14 | −4 | 1 | 19 | |||
50 | −11 | −4 | 2 | 14 | |||
60 | −6 | −4 | 4 | 6 | |||
Triangular | 13.2 | 0 | −35 | −8 | - | 40 | |
30 | −21 | −9 | 1 | 18 | |||
40 | −15 | −8 | 2 | 14 | |||
50 | −11 | −6 | 3 | 11 | |||
60 | −8 | −4 | 6 | 8 | |||
Triangular | 13.2 | 0 | −31 | −8 | - | 40 | |
30 | −21 | −9 | 1 | 25 | |||
40 | −14 | −9 | 2 | 18 | |||
50 | −10 | −8 | 3 | 12 | |||
60 | −6 | −6 | 7 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazquez-Sogorb, C.; Montoya-Roca, R.; Addamo, G.; Peverini, O.A.; Virone, G. Ridged Apertures for LEO Direct Radiating Arrays in Ka-Band. Appl. Sci. 2024, 14, 7825. https://doi.org/10.3390/app14177825
Vazquez-Sogorb C, Montoya-Roca R, Addamo G, Peverini OA, Virone G. Ridged Apertures for LEO Direct Radiating Arrays in Ka-Band. Applied Sciences. 2024; 14(17):7825. https://doi.org/10.3390/app14177825
Chicago/Turabian StyleVazquez-Sogorb, Carlos, Roger Montoya-Roca, Giuseppe Addamo, Oscar Antonio Peverini, and Giuseppe Virone. 2024. "Ridged Apertures for LEO Direct Radiating Arrays in Ka-Band" Applied Sciences 14, no. 17: 7825. https://doi.org/10.3390/app14177825
APA StyleVazquez-Sogorb, C., Montoya-Roca, R., Addamo, G., Peverini, O. A., & Virone, G. (2024). Ridged Apertures for LEO Direct Radiating Arrays in Ka-Band. Applied Sciences, 14(17), 7825. https://doi.org/10.3390/app14177825