Three-Dimensional Fuzzy Modeling for Nonlinear Distributed Parameter Systems Using Simultaneous Perturbation Stochastic Approximation
Abstract
:1. Introduction
- (1)
- The AP clustering approach is utilized to determine the most suitable quantity of fuzzy rules and construct preceding sets for the three-dimensional fuzzy model.
- (2)
- The Fourier space base functions are initially introduced as the resulting sets of the three-dimensional fuzzy model.
- (3)
- The SPSA technique is employed to dynamically update the coefficients of Fourier space base functions for the three-dimensional fuzzy model.
2. Problem Description
2.1. Mathematical Description of Distributed Parameter Systems and Its Characteristics
2.2. Three-Dimensional Fuzzy Modeling
- (1)
- Acquire the preceding set of fuzzy rules in order to derive temporal coefficients.
- (2)
- Acquire knowledge about the space base functions of the resulting set.
- (3)
- Obtain the predicted output through space–time reconstruction.
3. SPSA Learning-Based Three-Dimensional Fuzzy Modeling
3.1. Modeling Methodology
- (1)
- AP clustering is employed to manage a collection of spatiotemporal data and extract the preceding components of three-dimensional fuzzy rules in an adaptable manner, without the need to define the number of clusters.
- (2)
- The Fourier space base functions are investigated in three-dimensional fuzzy modeling.
- (3)
- SPSA algorithm is used to acquire the optimal parameters of Fourier space base functions.
3.2. AP Clustering Learning for Preceding Components of Three-Dimensional Fuzzy Rule
3.3. SPSA Learning for Resulting Components of Three-Dimensional Fuzzy Rule
3.3.1. Fourier Space Base Function
3.3.2. Parameter Learning Using SPSA Algorithm
- Step 1: Initialization and selection of coefficients
- Step 2: Simultaneous perturbation vector generation
- Step 3: Evaluation of the cost function
- Step 4: Approximation of the gradient
- Step 5: Revision of the estimation
- Step 6: Iterating or terminating
3.3.3. Three-Dimensional Fuzzy Modeling Flowchart
4. Application to RTCVD System
4.1. RTCVD System
4.2. SPSA Learning-Based Three-Dimensional Fuzzy Modeling
4.3. Simulation Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Algorithm Description of AP Clustering and Its Flow Chart
- Reference value is the degree to which point v is considered a cluster center, and it corresponds to the diagonal values of the similarity matrix S. The reference value directly affects the number of clusters obtained and the choice of cluster centers. A higher reference value indicates a higher likelihood that a data point will become a cluster center; conversely, a lower reference value reduces the likelihood of a data point being chosen as a cluster center. In the absence of prior knowledge, the median of similarity values is typically used as the reference value for each data point, generally ranging between [0, 1]. In this study, a reference value of 0.5 is used and set as a global shared preference.
- Damping factor is introduced to prevent data oscillations during the information propagation process. A higher damping factor limits the magnitude of updates during iterations, thus enhancing algorithm stability but slowing convergence. Conversely, a lower damping factor accelerates convergence but may lead to more oscillations. Based on expert experience, common settings for the damping factor are 0.5 or 0.9. In this study, a damping factor of 0.9 is used.
References
- Christofides, P.D.; Chow, J. Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes. Appl. Mech. Rev. 2002, 55, B29–B30. [Google Scholar] [CrossRef]
- Wang, Z.P.; Wu, H.N.; Chadli, M. H∞ Sampled-Data Fuzzy Observer Design for Nonlinear Parabolic PDE Systems. IEEE Trans. Fuzzy Syst. 2020, 29, 1262–1272. [Google Scholar] [CrossRef]
- Braess, D.; Schumaker, L.L. Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Lu, X.J.; Zou, W.; Huang, M.H. A Novel Spatiotemporal LS-SVM Method for Complex Distributed Parameter Systems with Applications to Curing Thermal Process. IEEE Trans. Ind. Inf. 2016, 12, 1156–1165. [Google Scholar] [CrossRef]
- Wang, M.L.; Li, N.; Li, S.Y. Model-Based Predictive Control for Spatially-Distributed Systems Using Dimensional Reduction Models. Int. J. Autom. Comput. 2011, 8, 1–7. [Google Scholar] [CrossRef]
- Huang, K.; Tao, S.; Wu, D.; Yang, C.; Gui, W. Physical Informed Sparse Learning for Robust Modeling of Distributed Parameter System and Its Industrial Applications. IEEE Trans. Automat. Sci. Eng. 2023, 21, 4561–4572. [Google Scholar] [CrossRef]
- Li, H.X.; Qi, C.K. Modeling of Distributed Parameter Systems for Applications—A Synthesized Review from Time-Space Separation. J. Process Control 2010, 20, 891–901. [Google Scholar] [CrossRef]
- Li, H.X.; Qi, C.K. Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems: A Time/Space Separation Based Approach; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Fan, Y.J.; Xu, K.K.; Wu, H.; Zheng, Y.; Tao, B. Spatiotemporal Modeling for Nonlinear Distributed Thermal Processes Based on KL Decomposition, MLP and LSTM Network. IEEE Access 2020, 8, 25111–25121. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhao, L.R.; Li, H.X.; Ma, S.W. A Novel Three-Dimensional Fuzzy Modeling Method for Nonlinear Distributed Parameter Systems. IEEE Trans. Fuzzy Syst. 2019, 27, 489–501. [Google Scholar] [CrossRef]
- Wang, M.L.; Qi, C.K.; Yan, H.C.; Shi, H.B. Hybrid Neural Network Predictor for Distributed Parameter System Based on Nonlinear Dimension Reduction. Neurocomputing 2016, 171, 1591–1597. [Google Scholar] [CrossRef]
- Zhang, R.D.; Tao, J.L.; Lu, R.Q.; Jin, Q.B. Decoupled ARX and RBF Neural Network Modeling Using PCA and GA Optimization for Nonlinear Distributed Parameter Systems. IEEE Trans. Neural Netw. Learn. Syst. 2016, 29, 457–469. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.-X.; Yang, H. Adaptive Spatial-Model-Based Predictive Control for Complex Distributed Parameter Systems. Adv. Eng. Inform. 2024, 59, 102331. [Google Scholar] [CrossRef]
- Chen, L.; Shen, W.; Zhou, Y.; Mou, X.; Lei, L. Learning-Based Sparse Spatiotemporal Modeling for Distributed Thermal Processes of Lithium-Ion Batteries. J. Energy Storage 2023, 69, 107834. [Google Scholar] [CrossRef]
- Jin, X.; Wu, D.; Yang, H.; Zhu, C.; Shen, W.; Xu, K. A Temporal–Spatiotemporal Domain Transformation-Based Modeling Method for Nonlinear Distributed Parameter Systems. J. Comput. Des. Eng. 2023, 10, 1267–1279. [Google Scholar] [CrossRef]
- Zhang, X.X.; Fu, Z.Q.; Li, S.Y.; Zou, T.; Wang, B. A Time/Space Separation Based 3D Fuzzy Modeling Approach for Nonlinear Spatially Distributed Systems. Int. J. Autom. Comput. 2018, 15, 52–65. [Google Scholar] [CrossRef]
- Deng, H.; Li, H.X.; Chen, G. Spectral-Approximation-Based Intelligent Modeling for Distributed Thermal Processes. IEEE Trans. Control Syst. Technol. 2005, 13, 686–700. [Google Scholar] [CrossRef]
- Meng, X.B.; Chen, C.L.P.; Li, H.X. Confidence-Aware Multiscale Learning for Online Modeling of Distributed Parameter Systems with Application to Curing Process. IEEE Trans. Ind. Electron. 2023, 70, 9432–9440. [Google Scholar] [CrossRef]
- Wei, P.; Li, H.X. Two-Dimensional Spatial Construction for Online Modeling of Distributed Parameter Systems. IEEE Trans. Ind. Electron. 2022, 69, 10227–10235. [Google Scholar] [CrossRef]
- Feng, Y.; Zhu, X.Y.; Wang, Y.N.; Wang, B.C.; Zhang, H.; Wu, Z.G.; Yan, H.C. PDE Model-Based On-Line Cell-Level Thermal Fault Localization Framework for Batteries. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 2507–2516. [Google Scholar] [CrossRef]
- Li, H.X.; Zhang, X.X.; Li, S.Y. A Three-Dimensional Fuzzy Control Methodology for a Class of Distributed Parameter Systems. IEEE Trans. Fuzzy Syst. 2007, 15, 470–481. [Google Scholar] [CrossRef]
- Zhang, X.X.; Jiang, Y.; Li, H.X.; Li, S.Y. SVR Learning-Based Spatiotemporal Fuzzy Logic Controller for Nonlinear Spatially Distributed Dynamic Systems. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1635–1647. [Google Scholar] [CrossRef]
- Frey, B.J.; Dueck, D. Clustering by Passing Messages Between Data Points. Science 2007, 315, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Spall, J.C. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Theodoropoulou, A.; Adomaitis, R.A.; Zafiriou, E. Model Reduction for Optimization of Rapid Thermal Chemical Vapor Deposition Systems. IEEE Trans. Semicond. Manuf. 1998, 11, 85–98. [Google Scholar] [CrossRef]
- Adomaitis, R.A. A Reduced-Basis Discretization Method for Chemical Vapor Deposition Reactor Simulation. Math. Comput. Model. 2003, 38, 159–175. [Google Scholar] [CrossRef]
- Qi, C.K.; Li, H.-X. A Karhunen-Loève Decomposition-Based Wiener Modeling Approach for Nonlinear Distributed Parameter Processes. Ind. Eng. Chem. Res. 2008, 47, 4184–4192. [Google Scholar] [CrossRef]
- Jiao, L.; Bie, R.; Zhang, G.; Wang, S.; Mehmood, R. Proper Global Shared Preference Detection Based on Golden Section and Genetic Algorithm for Affinity Propagation Clustering. Int. J. Distrib. Sens. Netw. 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Moiane, A.F.; Machado, A.M.L. Evaluation of the Clustering Performance of Affinity Propagation Algorithm Considering the Influence of Preference Parameter and Damping Factor. Bol. Ciênc. Geodés. 2018, 24, 426–441. [Google Scholar] [CrossRef]
Model | AP-Fourier-SPSA-3D | AP-Fourier-GD-3D | NNC-SVR-3D | KL–LS |
---|---|---|---|---|
Training data | 0.9229 | 0.9899 | 1.2862 | 2.4481 |
Test data | 0.9027 | 0.9558 | 1.2214 | 2.2903 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, T.; Cheng, C.; Wang, S. Three-Dimensional Fuzzy Modeling for Nonlinear Distributed Parameter Systems Using Simultaneous Perturbation Stochastic Approximation. Appl. Sci. 2024, 14, 7860. https://doi.org/10.3390/app14177860
Zhang X, Wang T, Cheng C, Wang S. Three-Dimensional Fuzzy Modeling for Nonlinear Distributed Parameter Systems Using Simultaneous Perturbation Stochastic Approximation. Applied Sciences. 2024; 14(17):7860. https://doi.org/10.3390/app14177860
Chicago/Turabian StyleZhang, Xianxia, Tangchen Wang, Chong Cheng, and Shaopu Wang. 2024. "Three-Dimensional Fuzzy Modeling for Nonlinear Distributed Parameter Systems Using Simultaneous Perturbation Stochastic Approximation" Applied Sciences 14, no. 17: 7860. https://doi.org/10.3390/app14177860
APA StyleZhang, X., Wang, T., Cheng, C., & Wang, S. (2024). Three-Dimensional Fuzzy Modeling for Nonlinear Distributed Parameter Systems Using Simultaneous Perturbation Stochastic Approximation. Applied Sciences, 14(17), 7860. https://doi.org/10.3390/app14177860