Development Status of Key Technologies for Optoelectronic Integrated Circuit Manufacturing
Abstract
:1. Introduction
2. Design of Optoelectronic Integrated Circuits
3. Manufacturing of Optoelectronic Integrated Circuits
3.1. Manufacturing Process
3.2. Integration Method
3.2.1. Monolithic Integration
3.2.2. Hybrid Integration
3.3. Optical Interconnect
4. Packaging of Optoelectronic Integrated Circuits
4.1. Monolithic Package
4.2. Optical Co-Package
5. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garmire, E.; Stoll, H.; Yariv, A.; Hunsperger, R.G. Optical waveguiding in proton-implanted GaAs. Appl. Phys. Lett. 1972, 21, 87–88. [Google Scholar] [CrossRef]
- Sengupta, K.; Nagatsuma, T.; Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622–635. [Google Scholar] [CrossRef]
- Hao, Y.; Xiang, S.; Han, G.; Zhang, J.; Ma, X.; Zhu, Z.; Guo, X.; Zhang, Y.; Han, Y.; Song, Z.; et al. Recent progress of integrated circuits and optoelectronic chips. Sci. China Inf. Sci. 2021, 64, 1–33. [Google Scholar] [CrossRef]
- Ali, J.; Youplao, P.; Pornsuwancharoen, N.; Chaiwong, K.; Chiangga, S.; Amiri, I.; Punthawanunt, S.; Singh, G.; Yupapin, P.; Grattan, K. An integrated microring circuit design for optoelectronic transformer applications. Results Phys. 2018, 11, 706–708. [Google Scholar] [CrossRef]
- Ury, I.; Margalit, S.; Yust, M.; Yariv, A. Monolithic integration of an injection laser and a metal semiconductor field effect transistor. Appl. Phys. Lett. 1979, 34, 430–431. [Google Scholar] [CrossRef]
- Leheny, R.F.; Nahory, R.E.; Pollack, M.A.; Ballman, A.A.; Beebe, E.D.; DeWinter, J.C.; Martin, R.J. Integrated In0.53Ga0.47As p-i-n f.e.t. Photoreceiver; Electronics Letters; Institution of Engineering and Technology: Stevenage, UK, 1980; pp. 353–355. [Google Scholar]
- Carter, A.; Forbes, N.; Goodfellow, R. Monolithic integration of optoelectronic, electronic and passive components in GaAlAs/GaAs multilayers. Electron. Lett. 1982, 18, 72–74. [Google Scholar] [CrossRef]
- Essebe, D.E.; Mengue, A.D.; Essimbi, B.Z. Simulink implementation of a new optoelectronic integrated circuit: Stability analysis and infinite-scroll attractor. Opt. Quantum Electron. 2021, 53, 388. [Google Scholar] [CrossRef]
- Yi, L.; Kaname, R.; Nishida, Y.; Yu, X.; Fujita, M.; Nagatsuma, T. Imaging Applications with a Single Resonant Tunneling Diode Transceiver in 300-GHz Band. In Proceedings of the 2020 International Topical Meeting on Microwave Photonics (MWP), Virtual, 24–26 November 2020; pp. 120–123. [Google Scholar]
- Okamoto, K.; Tsuruda, K.; Diebold, S.; Hisatake, S.; Fujita, M.; Nagatsuma, T. Terahertz Sensor Using Photonic Crystal Cavity and Resonant Tunneling Diodes. J. Infrared Millim. Terahertz Waves 2017, 38, 1085–1097. [Google Scholar] [CrossRef]
- Yu, X.; Kim, J.-Y.; Fujita, M.; Nagatsuma, T. Efficient mode converter to deep-subwavelength region with photonic-crystal waveguide platform for terahertz applications. Opt. Express 2019, 27, 28707–28721. [Google Scholar] [CrossRef]
- Stake, J.; Malko, A.; Bryllert, T.; Vukusic, J. Status and Prospects of High-Power Heterostructure Barrier Varactor Frequency Multipliers. Proc. IEEE 2017, 105, 1008–1019. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chen, K.-C.; Chang, C.-J. Realization of a self-powered ZnSnO MSM UV photodetector that uses surface state controlled photovoltaic effect. Ceram. Int. 2021, 47, 1785–1791. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Zhang, Q.; Wang, H. Self-powered multifunctional UV and IR photodetector as an artificial electronic eye. J. Mater. Chem. C 2017, 5, 1436–1442. [Google Scholar] [CrossRef]
- Mishra, M.; Gundimeda, A.; Garg, T.; Dash, A.; Das, S.; Vandana; Gupta, G. ZnO/GaN heterojunction based self-powered photodetectors: Influence of interfacial states on UV sensing. Appl. Surf. Sci. 2019, 478, 1081–1089. [Google Scholar] [CrossRef]
- Tassin, P.; Koschny, T.; Soukoulis, C.M. Graphene for Terahertz Applications. Science 2013, 341, 620–621. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Liu, H.; Peng, L.-M. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system. Nat. Commun. 2017, 8, 15649. [Google Scholar] [CrossRef]
- Capmany, J.; Gasulla, I.; Pérez, D. The programmable processor. Nat. Photonics 2016, 10, 6–8. [Google Scholar] [CrossRef]
- Tan, M.; Ming, D.; Wang, Z.C. From photonic integration to electronic-photonic heterogeneously-converging integrated circuits: A case study of wavelength locking of microrings. Micro/Nano Electron. Intell. Manuf. 2019, 1, 40. [Google Scholar]
- Song, W.; Wang, X.; Chen, H.; Guo, D.; Qi, M.; Wang, H.; Luo, X.; Luo, X.; Li, G.; Li, S. High-performance self-powered UV-Vis-NIR photodetectors based on horizontally aligned GaN microwire array/Si heterojunctions. J. Mater. Chem. C 2017, 5, 11551–11558. [Google Scholar] [CrossRef]
- Meng, J.; Qi, L.; Liu, X.; Zhou, J.; Zhang, D.; Jin, Z. The Design of Terahertz Monolithic Integrated Frequency Multipliers Based on Gallium Arsenide Material. Micromachines 2020, 11, 336. [Google Scholar] [CrossRef]
- Hussain, K.; Shuja, A.; Ali, M.; Fahad, S. Carrier removal and transport in photonic integrated circuit ready InGaAsP/InP substrate: Electrical and transients of charges evaluation. Mater. Sci. Semicond. Process. 2020, 121, 105384. [Google Scholar] [CrossRef]
- Chen, S.; Shi, Y.; He, S.; Dai, D. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt. Lett. 2016, 41, 836–839. [Google Scholar] [CrossRef]
- Duan, L.; He, F.; Tian, Y.; Sun, B.; Fan, J.; Yu, X.; Ni, L.; Zhang, Y.; Chen, Y.; Zhang, W. Fabrication of Self-Powered Fast-Response Ultraviolet Photodetectors Based on Graphene/ZnO:Al Nanorod-Array-Film Structure with Stable Schottky Barrier. ACS Appl. Mater. Interfaces 2017, 9, 8161–8168. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Wang, S.; Peng, L.-M. Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration. Nano Res. Energy 2023, 2, e9120058. [Google Scholar] [CrossRef]
- Panchenko, E.; Cadusch, J.J.; Avayu, O.; Ellenbogen, T.; James, T.D.; Gómez, D.; Roberts, A. In-Plane Detection of Guided Surface Plasmons for High-Speed Optoelectronic Integrated Circuits. Adv. Mater. Technol. 2018, 3, 1700196. [Google Scholar] [CrossRef]
- Xu, K. Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems. J. Micromechanics Microengineering 2021, 31, 054001. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Peng, L.-M. Three-dimensional integration of plasmonics and nanoelectronics. Nat. Electron. 2018, 1, 644–651. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, Z.; Zhang, Z. Research progress on monolithic integration of silicon based optoelectronics with microelectronics. Micro/Nano Electron. Intell. Manuf. 2019, 1, 55–67. [Google Scholar]
- Chen, J.; Ouyang, W.; Yang, W.; He, J.; Fang, X. Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications. Adv. Funct. Mater. 2020, 30, 1909909. [Google Scholar] [CrossRef]
- Zimmermann, H. Silicon Optoelectronic Integrated Circuits; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Datta, I.; Phare, C.T.; Dutt, A.; Mohanty, A.; Lipson, M. Integrated Graphene Electro-Optic Phase Modulator. In Proceedings of the Conference on Lasers and Electro-Optics, Optica Publishing Group, San Jose, CA, USA, 14–19 May 2017; p. STu3N.5. [Google Scholar]
- Fang, Y.-Q.; Luo, K.; Gao, X.-G.; Huo, G.-Q.; Zhong, A.; Liao, P.-F.; Pu, P.; Bao, X.-H.; Chen, Y.-A.; Zhang, J.; et al. High detection efficiency silicon single-photon detector with a monolithic integrated circuit of active quenching and active reset. Rev. Sci. Instrum. 2020, 91, 123106. [Google Scholar] [CrossRef]
- Kim, C.; Koyama, A.; Shimazoe, K.; Takahashi, H.; Takeshita, T.; Kurachi, I.; Miyoshi, T.; Nakamura, I.; Kishimoto, S.; Arai, Y. Development of circuit integrated monolithic SOI-SiPM for radiation detection. J. Instrum. 2020, 15, C02049. [Google Scholar] [CrossRef]
- Schulz, W.-M.; Spang, M.; Wintrich, A.; Konig, B.; Berberich, S.E. Novel Monolithic Integrated Device with Gate Resistor for External IGBT Clamping Leading to Enhanced Short Circuit Behavior. In Proceedings of the 2021 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), Virtual, 30 May–3 June 2021. [Google Scholar]
- Shen, G.; Che, W.; Feng, W.; Shi, Y.; Shen, Y.; Xu, F. A Miniaturized Ka-Band Bandpass Filter Using Folded Hybrid Resonators Based on Monolithic Microwave Integrated Circuit Technology. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1778–1782. [Google Scholar] [CrossRef]
- Zhang, L.; Tong, X.; Han, J.; Cheng, X. A 45–61 GHz monolithic microwave integrated circuit subharmonic mixer incorporating dual-band power divider. Microw. Opt. Technol. Lett. 2020, 62, 2851–2856. [Google Scholar] [CrossRef]
- Cheng, C.; Huang, B.; Mao, X.; Zhang, Z.; Zhang, Z.; Geng, Z.; Xue, P.; Chen, H. Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors. Nanophotonics 2017, 6, 1343–1352. [Google Scholar] [CrossRef]
- Zavracky, P.M.; Zavracky, M.M.; Fan, J.C.; Salerno, J.P. Monolithic Integrated Transceiver of III–V Devices on Silicon. U.S. Patent 4,989,934, 5 February 1991. [Google Scholar]
- Soref, R.A.; Friedman, L.R. Silicon-Based Strain-Symmetrized Ge-Si Quantum Lasers. U.S. Patent 6,154,475, 28 November 2000. [Google Scholar]
- Ting, S.; Bulsara, M.T.; Yang, V.; Groenert, M.; Samavedam, S.; Currie, M.; Langdo, T.; Fitzgerald, E.A.; Joshi, A.M.; Brown, R.; et al. Monolithic integration of III-V materials and devices on silicon. In Proceedings of the Optoelectronics 9‘9—Integrated Optoelectronic Devices, San Jose, CA, USA, 23–29 January 1999. [Google Scholar]
- de Dobbelaere, P. Integrated Transceiver with Lightpipe Coupler. U.S. Patent 7773836, 10 August 2010. [Google Scholar]
- Joo, J.; Jang, K.-S.; Kim, S.H.; Kim, I.G.; Oh, J.H.; Kim, S.A.; Kim, G.; Jeong, G.-S.; Chi, H.; Jeong, D.-K. 100 Gb/s photoreceiver module based on 4ch × 25 Gb/s vertical-illumination-type Ge-on-Si photodetectors and amplifier circuits. In Silicon Photonics XI; SPIE: Bellingham, WA, USA, 2016. [Google Scholar]
- Wang, R.; Vasiliev, A.; Muneeb, M.; Malik, A.; Sprengel, S.; Boehm, G.; Amann, M.-C.; Šimonytė, I.; Vizbaras, A.; Vizbaras, K.; et al. III–V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2–4 μm wavelength range. Sensors 2017, 17, 1788. [Google Scholar] [CrossRef]
- Doerr, C.; Chen, L. Monolithic Silicon Coherent Transceiver with Integrated Laser and Gain Elements. U.S. Patent 10284300B2, 7 May 2019. [Google Scholar]
- Falconi, F.; Porzi, C.; Melo, S.; Nottola, A.; Tirelli, S.; Preve, G.B.; Sorel, M.; Bogoni, A. Wideband single-sideband suppressed-carrier modulation with silicon photonics optical filters. In Proceedings of the 2019 International Topical Meeting on Microwave Photonics (MWP), Ottawa, ON, Canada, 7–10 October 2019; pp. 1–4. [Google Scholar]
- Slight, T.J.; Romeira, B.; Wang, L.; Figueiredo, J.M.L.; Wasige, E.; Ironside, C.N. A LiÉnard Oscillator Resonant Tunnelling Diode-Laser Diode Hybrid Integrated Circuit: Model and Experiment. IEEE J. Quantum Electron. 2008, 44, 1158–1163. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Zhang, K.; Huang, J.; Ran, H. Research on Manufacturing Readiness Level Improvement of Hybrid Integrated Circuit Based on Intelligent Manufacturing. J. Phys. Conf. Ser. 2021, 1884, 012016. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H.; Chai, J.; Wang, S.; Lev, B. Performance evaluation and prediction of the integrated circuit industry in China: A hybrid method. Socio-Econ. Plan. Sci. 2020, 69, 100712. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, X.; Ma, Q.; Wu, H.T.; Zhang, H.C.; Wang, M.; Wang, Z.X.; He, P.H.; Bao, D.; Cui, T.J. Programmable Hybrid Circuit Based on Reconfigurable SPP and Spatial Waveguide Modes. Adv. Mater. Technol. 2020, 5, 1900828. [Google Scholar] [CrossRef]
- Duan, G.-H.; Olivier, S.; Jany, C.; Malhouitre, S.; Le Liepvre, A.; Shen, A.; Pommarede, X.; Levaufre, G.; Girard, N.; Make, D.; et al. Hybrid III-V silicon photonic integrated circuits for optical communication applications. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 379–389. [Google Scholar] [CrossRef]
- Tanaka, S.; Jeong, S.-H.; Sekiguchi, S.; Kurahashi, T.; Tanaka, Y.; Morito, K. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology. Opt. Express 2012, 20, 28057–28069. [Google Scholar] [CrossRef]
- Lasky, J.B. Wafer bonding for silicon-on-insulator technologies. Appl. Phys. Lett. 1986, 48, 78–80. [Google Scholar] [CrossRef]
- Shimbo, M.; Furukawa, K.; Fukuda, K.; Tanzawa, K. Silicon-to-silicon direct bonding method. J. Appl. Phys. 1986, 60, 2987–2989. [Google Scholar] [CrossRef]
- Keyvaninia, S.; Muneeb, M.M.; Stanković, S.; Van Veldhoven, P.J.; Van Thourhout, D.; Roelkens, G. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt. Mater. Express 2013, 3, 35–46. [Google Scholar] [CrossRef]
- Yang, S.; Qu, Y.; Deng, N.; Wang, K.; He, S.; Yuan, Y.; Hu, W.; Wu, S.; Wang, H. Effects of surface activation time on Si-Si direct wafer bonding at room temperature. Mater. Res. Express 2021, 8, 085901. [Google Scholar] [CrossRef]
- Ke, W.; Lin, Y.; He, M.; Xu, M.; Zhang, J.; Lin, Z.; Yu, S.; Cai, X. Digitally tunable optical delay line based on thin-film lithium niobate featuring high switching speed and low optical loss. Photon-Res. 2022, 10, 2575–2583. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; An, J.; Zhang, J.; Huang, N.; He, W.; Wang, Y.; Yin, X.; Wang, H.; Li, J.; et al. Eight-wavelength receiver optical subassembly based on silica hybrid integrated technology. Opt. Eng. 2019, 58, 097101. [Google Scholar] [CrossRef]
- Hua, R.; Fu, Y.; Wei, W. Present Situation and Development of Optical Interconnection Technology. Science 2002, 21, 72–75. [Google Scholar]
- Wang, L. An Investigation on Key Technologies for On-chip Optical Interconnection. In Proceedings of the 2021 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 28–29 January 2021; pp. 214–219. [Google Scholar]
- Shen, W.; Du, J.; Xu, K.; He, Z. On-Chip Selective Dual-Mode Switch for 2-μm Wavelength High-Speed Optical Interconnection. IEEE Photon- Technol. Lett. 2021, 33, 483–486. [Google Scholar] [CrossRef]
- Choudhary, V.; Singh, M. Optimization Technique in Optical Interconnection Network. Available online: https://www.ijana.in/Special%20Issue/C21.pdf (accessed on 1 September 2021).
- Shen, W.; Du, J.; Sun, L.; Wang, C.; Zhu, Y.; Xu, K.; Chen, B.; He, Z. Low-Latency and High-Speed Hollow-Core Fiber Optical Interconnection at 2-Micron Waveband. J. Light. Technol. 2020, 38, 3874–3882. [Google Scholar] [CrossRef]
- Bozeat, R.J.; Day, S.; Hopper, F.; Payne, F.; Roberts, S.; Asghari, M.J.S.P. Silicon based waveguides. Silicon Photonics 2004, 94, 269–294. [Google Scholar]
- Goodman, J.; Leonberger, F.; Kung, S.-Y.; Athale, R. Optical interconnections for VLSI systems. Proc. IEEE 1984, 72, 850–866. [Google Scholar] [CrossRef]
- Lorenzo, J.P.; Soref, R.A. Electro-Optical Silicon Devices. U.S. Patent 4,787,691, 29 November 1988. [Google Scholar]
- Berger, M.; Münder, H.; Frohnhoff, S.; Lüth, H.; Thönissen, M.J.D.P. Opto-Electronic and Optical Element. Deutsches Patent DE4319413A, 14 June 1993. [Google Scholar]
- Zhang, Y.; Li, B. Photonic crystal-based bending waveguides for optical interconnections. Opt. Express 2006, 14, 5723–5732. [Google Scholar] [CrossRef]
- Gates, S.M.; Nag, J.; Orcutt, J.S.; Plouchart, J.-O.; Skordas, S. Low-Loss Large-Grain Optical Waveguide for Interconnecting Components Integrated on a Glass Substrate. U.S. Patent 9,472,710, 18 October 2016. [Google Scholar]
- Norwood, R.A.; Koch, T.L.; Pau, S.K. Relaxed Tolerance Adiabatic Coupler for Optical Interconnects. U.S. Patent 16/481,877, 30 April 2020. [Google Scholar]
- Gu, H.; Xu, J. Design of 3D optical network on chip. In Proceedings of the 2009 IEEE Symposium on Photonics and Optoelectronics, Wuhan, China, 14–16 August 2009; pp. 1–4. [Google Scholar]
- Subbaraman, H.; Xu, X.; Hosseini, A.; Zhang, X.; Zhang, Y.; Kwong, D.; Chen, R.T. Recent advances in silicon-based passive and active optical interconnects. Opt. Express 2015, 23, 2487–2511. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Overmeyer, L. Chip-on-Flex Packaging of Optoelectronic Devices in Polymer-Based Planar Optical Interconnects. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Lau, J.H.; Packaging, M. Recent advances and trends in advanced packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 228–252. [Google Scholar] [CrossRef]
- Beica, R.; Ivankovic, A.; Buisson, T.; Kumar, S.; Azemar, J.; Beica, A.I.R. The Growth of Advanced Packaging: An Overview of the Latest Technology Developments, Applications and Market Trends. Int. Symp. Microelectron. 2015, 2015, 000001–000005. [Google Scholar] [CrossRef]
- Lenz, C.; Ziesche, S.; Schletz, A.; Bach, H.L.; Erlbacher, T. Real embedding process of SiC devices in a monolithic ceramic package using LTCC technology. In Proceedings of the 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC), Tonsberg, Norway, 15–18 September 2020; pp. 1–5. [Google Scholar]
- Eales, B.A.; Bricheno, T.; Leggett, N.D.; Ashton, J.E. Injection Laser Packages. U.S. Patent 4,615,031, 30 September 1986. [Google Scholar]
- Karstensen, H.; Auracher, F.; Ebel, N.; Fiedler, J.; Plickert, V.; Melchior, L.; Leininger, L.; Bittner, M.; Festag, M.; Wicke, M.; et al. Module packaging for high-speed serial and parallel transmission. In Proceedings of the IEEE 50th Electronic Components and Technology Conference (Cat. No. 00CH37070), Las Vegas, NV, USA, 21–24 May 2000. [Google Scholar]
- Yee, K.C. Semiconductor Packaging Construction and Manufacturing Methods. China Patent TW200633172A, 21 November 2005. [Google Scholar]
- Ma, Q.; Wang, Z.; Pan, L. Monolithic integration of multiple sensors on a single silicon chip. In Proceedings of the 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Budapest, Hungary, 30 May–2 June 2016; pp. 1–4. [Google Scholar]
- Shi, Z.; Zhu, D.; Xu, A. Packaging Structure of Quantum Cascade Lasers. China Patent CN109038208A, 14 August 2018. [Google Scholar]
- Abrams, N.C.; Cheng, Q.; Glick, M.; Jezzini, M.; Morrissey, P.; O’Brien, P.; Bergman, K. Silicon Photonic 2.5D Multi-Chip Module Transceiver for High-Performance Data Centers. J. Light. Technol. 2020, 38, 3346–3357. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, F.; Xue, H. High-Speed and High-Density Optoelectronic Co-Package Technologies. ZTE Technol. J. 2018, 24, 27–32. [Google Scholar]
- Aktiengesellschaft, S. Electrooptical Unit. EP EP0308749A3, 29 March 1989. [Google Scholar]
- Fumio, H.; Tadashi, K.; Hisatane, K. Integrierte Schaltungspackung und Verfahren zu ihrem Zusammenbau. DE Patent DE69636335T2, 24 August 2006. [Google Scholar]
- ITRI. Optical Sub Component Packaging with Passive Alignment Features and Manufacturing Methods. China Patent TW200411245A, 11 June 2004.
- Guidotti, D.; Xue, H. National Center for Advanced Packaging Co. A Method for Forming an Optical Communication Device and a Stop Hole. China Patent CN104101967B, 15 October 2014. [Google Scholar]
- Yong, W.Y.; Kucher, A.; Lee, C.Y.; Wan, S.P. Semiconductor Package with Leadframe Interconnection Structure. U.S. Patent 10,872,848, 22 December 2020. [Google Scholar]
Monolithic Integration | Hybrid Integration | |
---|---|---|
Features | Optoelectronic components can grow on substrate materials directly | Optoelectronic components can transfer to substrate materials |
Advantages |
|
|
Disadvantages |
|
|
Item | Advantages | Disadvantages |
---|---|---|
LiNbO3 |
|
|
Silicon material on insulator |
|
|
SiO2 |
|
|
Si3N4 |
|
|
Polymeric materials |
|
|
III–V semiconductor materials |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, M.; Fang, J.; Chen, D.; Chen, L.; Peng, L.; Zhang, C.; Chen, Y.; Lu, X. Development Status of Key Technologies for Optoelectronic Integrated Circuit Manufacturing. Appl. Sci. 2024, 14, 8073. https://doi.org/10.3390/app14178073
Liang M, Fang J, Chen D, Chen L, Peng L, Zhang C, Chen Y, Lu X. Development Status of Key Technologies for Optoelectronic Integrated Circuit Manufacturing. Applied Sciences. 2024; 14(17):8073. https://doi.org/10.3390/app14178073
Chicago/Turabian StyleLiang, Mengjie, Ji Fang, Dunkui Chen, Lang Chen, Lingling Peng, Chi Zhang, Yingchun Chen, and Xiang Lu. 2024. "Development Status of Key Technologies for Optoelectronic Integrated Circuit Manufacturing" Applied Sciences 14, no. 17: 8073. https://doi.org/10.3390/app14178073
APA StyleLiang, M., Fang, J., Chen, D., Chen, L., Peng, L., Zhang, C., Chen, Y., & Lu, X. (2024). Development Status of Key Technologies for Optoelectronic Integrated Circuit Manufacturing. Applied Sciences, 14(17), 8073. https://doi.org/10.3390/app14178073