Advances in Particle Acceleration: Novel Techniques, Instruments and Applications
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Schulte, R.; Johnstone, C.; Boucher, S.; Esarey, E.; Geddes, C.G.R.; Kravchenko, M.; Kutsaev, S.; Loo, B.W.; Méot, F.; Mustapha, B.; et al. Transformative Technology for FLASH Radiation Therapy. Appl. Sci. 2023, 13, 5021. https://doi.org/10.3390/app13085021.
- Deut, U.; Camperi, A.; Cavicchi, C.; Cirio, R.; Data, E.M.; Durisi, E.A.; Ferrero, V.; Ferro, A.; Giordanengo, S.; Villarreal, O.M.; et al. Characterization of a Modified Clinical Linear Accelerator for Ultra-High Dose Rate Beam Delivery. Appl. Sci. 2024, 14, 7582. https://doi.org/10.3390/app14177582.
- Yu, H.-F.; He, Z.-F.; Zhao, M.-H.; Wan, W.-S.; Liu, H.-L.; Wu, Y.; Lv, W.-Z.; Zhou, D.-Y.; Lu, H.-T. Design of a Miniaturized Electron Cyclotron Resonance Ion Source for High-Voltage Proton Accelerator. Appl. Sci. 2023, 13, 8831. https://doi.org/10.3390/app13158831.
- Yaramyshev, S.; Barth, W.; Lauber, S.; Miski-Oglu, M.; Rubin, A.; Scheeler, U.; Vormann, H.; Vossberg, M. DYNAMION—A Powerful Beam Dynamics Software Package for the Development of Ion Linear Accelerators and Decelerators. Appl. Sci. 2023, 13, 8422. https://doi.org/10.3390/app13148422.
- Wu, Y.; He, Z.F.; Wan, W.S.; Zheng, P.P.; Yu, H.F. Research and Design of the RF Cavity for an 11 MeV Superconducting Cyclotron. Appl. Sci. 2024, 14, 3549. https://doi.org/10.3390/app14093549.
- Wang, G.; Quan, S.; Lin, L.; Ren, M.; Hao, J.; Wang, F.; Jiao, F.; Zhu, F.; Huang, S.; Yan, X.; et al. Nb3Sn Cavities Coated by Tin Vapor Diffusion Method at Peking University. Appl. Sci. 2023, 13, 8618. https://doi.org/10.3390/app13158618.
- Xu, H.; Anisimov, P.M.; Carlsten, B.E.; Duffy, L.D.; Faillace, L.; Johnstone, C.; Xu, H.; Anisimov, P.M.; Carlsten, B.E.; Duffy, L.D.; et al. X-ray Free Electron Laser Accelerator Lattice Design Using Laser-Assisted Bunch Compression. Appl. Sci. 2023, 13, 2285. https://doi.org/10.3390/app13042285.
- Karimov, A.R.; Murad, P.A.; Yamschikov, V.A.; Baranov, D.S. Plasma Accelerator Utilizing the Medium of Near-Earth Space for Orbital Transfer Vehicles. Appl. Sci. 2023, 13, 13195. https://doi.org/10.3390/app132413195.
- Li, Y.; Bauer, M.; Kelz, S.; Strack, H.; Simolka, J.; Mazur, C.; Sommer, M.; Mocker, A.; Srama, R. Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart. Appl. Sci. 2023, 13, 4441. https://doi.org/10.3390/app13074441.
References
- Kutsaev, S.V. Advanced Technologies for Applied Particle Accelerators and Examples of Their Use (Review). Tech. Phys. 2021, 66, 161–195. [Google Scholar] [CrossRef]
- Kutsaev, S.V. Novel Technologies for Compact Electron Linear Accelerators (Review). Instrum. Exp. Tech. 2021, 64, 641–656. [Google Scholar] [CrossRef]
- Rakitin, M.S.; Moeller, P.; Nagler, R.; Nash, B.; Bruhwiler, D.L.; Smalyuk, D.; Zhernenkov, M.; Chubar, O. Sirepo: An Open-Source Cloud-Based Software Interface for X-Ray Source and Optics Simulations. J. Synchrotron Radiat. 2018, 25, 1877–1892. [Google Scholar] [CrossRef] [PubMed]
- Tubin, S.; Vozenin, M.C.; Prezado, Y.; Durante, M.; Prise, K.M.; Lara, P.C.; Greco, C.; Massaccesi, M.; Guha, C.; Wu, X.; et al. Novel Unconventional Radiotherapy Techniques: Current Status and Future Perspectives—Report from the 2nd International Radiation Oncology Online Seminar. Clin. Transl. Radiat. Oncol. 2023, 40, 100605. [Google Scholar] [CrossRef] [PubMed]
- Matuszak, N.; Suchorska, W.M.; Milecki, P.; Kruszyna-Mochalska, M.; Misiarz, A.; Pracz, J.; Malicki, J. FLASH Radiotherapy: An Emerging Approach in Radiation Therapy. Rep. Pract. Oncol. Radiother. 2022, 27, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Loo, B.W.; Verginadis, I.I.; Sørensen, B.S.; Mascia, A.E.; Perentesis, J.P.; Koong, A.C.; Schüler, E.; Rankin, E.B.; Maxim, P.G.; Limoli, C.L.; et al. Navigating the Critical Translational Questions for Implementing FLASH in the Clinic. Semin. Radiat. Oncol. 2024, 34, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Graeff, C.; Volz, L.; Durante, M. Emerging Technologies for Cancer Therapy Using Accelerated Particles. Prog. Part. Nucl. Phys. 2023, 131, 104046. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Z.; Miao, L.; Li, Y. Boron Neutron Capture Therapy: Current Status and Challenges. Front. Oncol. 2022, 12, 788770. [Google Scholar] [CrossRef] [PubMed]
- Choiński, J.; Łyczko, M. Prospects for the Production of Radioisotopes and Radiobioconjugates for Theranostics. Bio-Algorithms Med-Syst. 2021, 17, 241–257. [Google Scholar] [CrossRef]
- Higashi, T.; Nagatsu, K.; Tsuji, A.B.; Zhang, M.R. Research and Development for Cyclotron Production of 225Ac from 226Ra—The Challenges in a Country Lacking Natural Resources for Medical Applications. Processes 2022, 10, 1215. [Google Scholar] [CrossRef]
- Rosenzweig, J.B.; Majernik, N.; Robles, R.R.; Andonian, G.; Camacho, O.; Fukasawa, A.; Kogar, A.; Lawler, G.; Miao, J.; Musumeci, P.; et al. An Ultra-Compact x-Ray Free-Electron Laser. New J. Phys. 2020, 22, 093067. [Google Scholar] [CrossRef]
- Rosenzweig, J.B.; Andonian, G.; Agustsson, R.; Anisimov, P.M.; Araujo, A.; Bosco, F.; Carillo, M.; Chiadroni, E.; Giannessi, L.; Huang, Z.; et al. A High-Flux Compact X-Ray Free-Electron Laser for Next-Generation Chip Metrology Needs. Instruments 2024, 8, 19. [Google Scholar] [CrossRef]
- Graves, W.S. The CXFEL Project at Arizona State University. In Proceedings of the 67th ICFA Adv. Beam Dyn. Workshop Future Light Sources, Luzern, Switzerland, 27 August–1 September 2023; pp. 54–57. [Google Scholar]
- Dolgashev, V.A. Design Criteria for High-Gradient Radio-Frequency Linacs. Appl. Sci. 2023, 13, 10849. [Google Scholar] [CrossRef]
- Simakov, E.I.; Dolgashev, V.A.; Tantawi, S.G. Advances in High Gradient Normal Conducting Accelerator Structures. Nucl. Instrum. Methods Phys. Res. A 2018, 907, 221–230. [Google Scholar] [CrossRef]
- Kutsaev, S.V.; Jacobson, B.; Smirnov, A.Y.; Campese, T.; Dolgashev, V.A.; Goncharik, V.; Harrison, M.; Murokh, A.; Nanni, E.; Picard, J.; et al. Nanosecond Rf-Power Switch for Gyrotron-Driven Millimeter-Wave Accelerators. Phys. Rev. Appl. 2019, 11, 034052. [Google Scholar] [CrossRef]
- Cahill, A.D.; Rosenzweig, J.B.; Dolgashev, V.A.; Tantawi, S.G.; Weathersby, S. High Gradient Experiments with X -Band Cryogenic Copper Accelerating Cavities. Phys. Rev. Accel. Beams 2018, 21, 102002. [Google Scholar] [CrossRef]
- Ciovati, G.; Anderson, J.; Balachandran, S.; Cheng, G.; Coriton, B.; Daly, E.; Dhakal, P.; Gurevich, A.; Hannon, F.; Harding, K.; et al. Development of a Prototype Superconducting Radio-Frequency Cavity for Conduction-Cooled Accelerators. Phys. Rev. Accel. Beams 2023, 26, 044701. [Google Scholar] [CrossRef]
- Posen, S.; Lee, J.; Seidman, D.N.; Romanenko, D.; Tennis, B.; Melnychuk, O.S.; Sergatskov, D.A. Advances in Nb3Sn superconducting radiofrequency cavities towards first practical accelerator applications. Supercond. Sci. Technol. 2022, 34, 025007. [Google Scholar] [CrossRef]
- Kurz, T.; Heinemann, T.; Gilljohann, M.F.; Chang, Y.Y.; Couperus Cabadağ, J.P.; Debus, A.; Kononenko, O.; Pausch, R.; Schöbel, S.; Assmann, R.W.; et al. Demonstration of a Compact Plasma Accelerator Powered by Laser-Accelerated Electron Beams. Nat. Commun. 2021, 12, 2895. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutsaev, S.V. Advances in Particle Acceleration: Novel Techniques, Instruments and Applications. Appl. Sci. 2024, 14, 8098. https://doi.org/10.3390/app14188098
Kutsaev SV. Advances in Particle Acceleration: Novel Techniques, Instruments and Applications. Applied Sciences. 2024; 14(18):8098. https://doi.org/10.3390/app14188098
Chicago/Turabian StyleKutsaev, Sergey V. 2024. "Advances in Particle Acceleration: Novel Techniques, Instruments and Applications" Applied Sciences 14, no. 18: 8098. https://doi.org/10.3390/app14188098
APA StyleKutsaev, S. V. (2024). Advances in Particle Acceleration: Novel Techniques, Instruments and Applications. Applied Sciences, 14(18), 8098. https://doi.org/10.3390/app14188098