A Methodology for the Mechanical Design of Pneumatic Joints Using Artificial Neural Networks
Abstract
:1. Introduction
- The realization of the Bend dataset;
- The adoption of the ML to train 14 regression algorithms on the dataset;
- The identification of the best algorithm for the mechanical design of the proposed SPA;
- The experimental test of the methodology on three tubes and reinforcements that differ in the joints’ length, mass, geometric, and functional parameters.
2. Materials and Manufacturing Process
2.1. Rationale of the SPA
2.2. Component Realization
3. Dataset Construction and Regression Algorithms
3.1. Camera Calibration
3.2. Bend Dataset
3.3. Regression Algorithms
4. Experimental Results
4.1. Experimental Tests
4.2. Comparison between BNN and RSM
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dzedzickis, A.; Subačiūtė-Žemaitienė, J.; Šutinys, E.; Samukaitė-Bubnienė, U.; Bučinskas, V. Advanced Applications of Industrial Robotics: New Trends and Possibilities. Appl. Sci. 2022, 12, 135. [Google Scholar] [CrossRef]
- Laschi, C.; Mazzolai, B.; Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 2016, 1. [Google Scholar] [CrossRef] [PubMed]
- Kastritsi, T.; Ajoudani, A. A Passive Power-Based Control Strategy for pHRI Tasks With Omni-Directional Robotic Mobile Platforms. IEEE Robot. Autom. Lett. 2024, 9, 6959–6966. [Google Scholar] [CrossRef]
- Dragusanu, M.; Marullo, S.; Malvezzi, M.; Achilli, G.M.; Valigi, M.C.; Prattichizzo, D.; Salvietti, G. The DressGripper: A Collaborative Gripper With Electromagnetic Fingertips for Dressing Assistance. IEEE Robot. Autom. Lett. 2022, 7, 7479–7486. [Google Scholar] [CrossRef]
- Polsinelli, M.; Di Matteo, A.; Lozzi, D.; Mattei, E.; Mignosi, F.; Nazzicone, L.; Stornelli, V.; Placidi, G. Portable Head-Mounted System for Mobile Forearm Tracking. Sensors 2024, 24, 2227. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, T.; Yu, J.; Xiao, S.; Xiong, L.; Yang, L. Virtual Potential Field-Based Motion Planning for Human-Robot Collaboration via Kinesthetically Guided Teleoperation. In Proceedings of the 7th International Conference on Robotics, Control and Automation (ICRCA), Taizhou, China, 5–7 January 2023; pp. 37–44. [Google Scholar]
- Neri, F.; Forlini, M.; Scoccia, C.; Palmieri, G.; Callegari, M. Experimental Evaluation of Collision Avoidance Techniques for Collaborative Robots. Appl. Sci. 2023, 13, 2944. [Google Scholar] [CrossRef]
- Antonelli, M.G.; Beomonte Zobel, P.; Manes, C.; Mattei, E.; Stampone, N. Emotional Intelligence for the Decision-Making Process of Trajectories in Collaborative Robotics. Machines 2024, 12, 113. [Google Scholar] [CrossRef]
- Heung, K.H.; Lei, T.; Liang, K.; Xu, J.; Seo, J.; Li, H. Quasi-Static Modeling Framework for Soft Bellow-Based Biomimetic Actuators. Biomimetics 2024, 9, 160. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, H.; Hao, T.; Pang, D.; Wang, F.; Liu, S. Dexterous all-soft hand (DASH) with active palm: Multi-functional soft hand beyond grasping. Smart Mater. Struct. 2023, 32, 125012. [Google Scholar] [CrossRef]
- Ferraresi, C.; Manuello Bertetto, A.; Mazza, L. Design and Realisation of a Flexible Pneumatic Actuator for Robotics. In Proceedings of the 5th Scandinavian International Conference on Fluid Power, SICFP ’97, Linkoping, Sweden, 28–30 May 1997; pp. 29–43. [Google Scholar]
- Li, D.; Fan, D.; Zhu, R.; Lei, Q.; Liao, Y.; Yang, X.; Pan, Y.; Wang, Z.; Wu, Y.; Liu, S.; et al. Origami-Inspired Soft Twisting Actuator. Soft Robot. 2022, 10, 395–409. [Google Scholar] [CrossRef]
- Antonelli, M.G.; Beomonte Zobel, P.; Sarwar, M.A.; Stampone, N. Seahorse-Tail-Inspired Soft Pneumatic Actuator: Development and Experimental Characterization. Biomimetics 2024, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Y.; Ren, T.; Xia, J.; Liu, H.; Wu, C.; Lin, S.; Chen, Y. An Untethered Soft Robotic Dog Standing and Fast Trotting with 467 Jointless and Resilient Soft Legs. Biomimetics 2023, 8, 596. [Google Scholar] [CrossRef] [PubMed]
- Nodehi, S.E.; Bruzzone, L.; Lalegani Dezaki, M.; Zolfagharian, A.; Bodaghi, M. Porcospino Flex: A Bio-Inspired Single-Track Robot with a 3D-Printed, Flexible, Compliant Vertebral Column. Robotics 2024, 13, 76. [Google Scholar] [CrossRef]
- Wang, Z.; Long, Y.; Zhang, Z.; Liu, R.; Wang, H.; Chen, G. Powerful Multidirectional Pneumatic Jumper With Lightweight Fabric Chambers and Buckling-Controllable Elastic Beams. IEEE Robot. Autom. Lett. 2024, 9, 3347–3354. [Google Scholar] [CrossRef]
- Fan, J.; Wang, S.; Yu, Q.; Zhu, Y. Swimming Performance of the Frog-Inspired Soft Robot. Soft Robot. 2020, 7, 615–626. [Google Scholar] [CrossRef]
- Mendoza, N.; Haghshenas-Jaryani, M. Combined Soft Grasping and Crawling Locomotor Robot for Exterior Navigation of Tubular Structures. Machines 2024, 12, 157. [Google Scholar] [CrossRef]
- Meder, F.; Baytekin, B.; Del Dottore, E.; Meroz, Y.; Tauber, F.; Walker, I.; Mazzolai, B. A perspective on plant robotics: From bioispiration to hybrid systems. Bioinspir. Biomim. 2023, 18, 015006. [Google Scholar] [CrossRef]
- Marechal, L.; Balland, P.; Lindenroth, L.; Petrou, F.; Kontovounisios, C.; Bello, F. Toward a Common Framework and Database 446 of Materials for Soft Robotics. Soft Robot. 2021, 8, 284–297. [Google Scholar] [CrossRef]
- Low, J.H.; Khin, P.M.; Han, Q.Q.; Yao, H.; Teoh, Y.S.; Zeng, Y.; Li, S.; Liu, J.; Liu, Z.; Valdivia y Alvaraldo, P.; et al. Sensorized Reconfigurable Soft Robotic Gripper System for Automated Food Handling. IEEE/ASME Trans. Mechatron. 2022, 27, 3232–3243. [Google Scholar] [CrossRef]
- Carello, M.; Ferraresi, C.; Visconte, C. A New Flexible Pneumatic Finger for a Fruit Harvesting Hand. In Proceedings of the 7th International Symposium on Fluid Control, Measurement and Visualization, Sorrento, Italy, 25–28 August 2003. [Google Scholar]
- Antonelli, M.G.; D’Ambrogio, W.; Durante, F. Development of a pneumatic soft actuator as a hand finger for a collaborative robot. In Proceedings of the 2018 2nd International Conference on Mechatronics Systems and Control Engineering (ICMSCE 2018), Amsterdam, The Netherlands, 21–23 February 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 67–71. [Google Scholar]
- Shintake, J.; Cacucciolo, V.; Floreano, D.; Shea, H. Soft Robotic Grippers. Adv. Mater. 2018, 30, 1707035. [Google Scholar] [CrossRef]
- Paterna, M.; De Benedictis, C.; Ferraresi, C. The Research on Soft Pneumatic Actuators in Italy: Design Solutions and Applications. Actuators 2022, 11, 328. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, J.; Ma, X.; Lee, A.; Kosuge, K.; Liu, Y.H. Design, Modeling, and Control of Soft Syringes Enabling Two Pumping Modes for Pneumatic Robot Applications. IEEE/ASME Trans. Mechatron. 2024, 29, 889–901. [Google Scholar] [CrossRef]
- Kokubu, S.; Wang, Y.; Tortós Vinocour, P.E.; Lu, Y.; Huang, S.; Nishimura, R.; Hsueh, Y.H.; Yu, W. Evaluation of Fiber-Reinforced Modular Soft Actuators for Individualized Soft Rehabilitation Gloves. Actuators 2022, 11, 84. [Google Scholar] [CrossRef]
- Antonelli, M.G.; Beomonte Zobel, P.; D’Ambrogio, W.; Durante, F.; Raparelli, T. An Analytical Formula For Designing Mckibben Pneumatic Muscles. Int. J. Mech. Eng. Technol. 2018, 9, 320–337. [Google Scholar]
- Kobayashi, W.; Dohta, S.; Akagi, T.; Ito, K. Analysis and Modeling of Tap-Water/Pneumatic Drive McKibben Type Artificial Muscles. Int. J. Mech. Eng. Robot. Res. 2017, 6, 463–466. [Google Scholar] [CrossRef]
- Inada, R.; Tsuruhara, S.; Ito, K. Precise Displacement Control of Tap-Water-Driven Muscle Using Adaptive Model Predictive Control with Hysteresis Compensation. JFPS Int. J. Fluid Power Syst. 2022, 15, 78–85. [Google Scholar] [CrossRef]
- Tsuruhara, S.; Ito, K. Data-Driven Model-Free Adaptive Displacement Control for Tap-Water-Driven Artificial Muscle and Parameter Design Using Virtual Reference Feedback Tuning. J. Robot. Mechatron. 2022, 34, 664–676. [Google Scholar] [CrossRef]
- Berthold, R.; Burgner-Kahrs, J.; Wangenheim, M.; Kahms, S. Investigating frictional contact behavior for soft material robot simulations. Meccanica 2023, 58, 2165–2176. [Google Scholar] [CrossRef]
- Xavier, M.S.; Tawk, C.D.; Zolfagharian, A.; Pinskier, J.; Howard, D.; Young, T.; Lai, J.; Harrison, S.M.; Yong, Y.K.; Bodaghi, M.; et al. Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. IEEE Access 2022, 10, 59442–59485. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design And Analysis of Experiment, 5th ed.; John Wiley & Son, Inc.: Hoboken, NJ, USA, 2001; ISBN 978-1118-14692-7. [Google Scholar]
- Sushant, S.G.; Iftekhar, A.K.; Markus, K. Design of computer experiments: A review. Comput. Chem. Eng. 2017, 106, 71–95. [Google Scholar]
- Antonelli, M.G.; Beomonte Zobel, P.; Stampone, N. Response Surface Methodology for Kinematic Design of Soft Pneumatic Joints: An Application to a Bio-Inspired Scorpion-Tail-Actuator. Machines 2024, 12, 439. [Google Scholar] [CrossRef]
- Stampone, N.; Antonelli, M.G. Identification of DOE-based Predictive Model for the Bending Behavior of a Soft Pneumatic Actuator. In Advances in Italian Mechanism Science. IFToMM Italy; Mechanism and Machine Science; Springer: Cham, Switzerland, 2024; Volume 164, p. 52. [Google Scholar]
- Lv, Z.; Wu, K.; Zhang, Z.; He, Y. Two-Way FSI Simulation and Experiments for Finger-Like Soft Pneumatic Actuator Under High-Speed Pressurization. IEEE Robot. Autom. Lett. 2024, 9, 7134–7141. [Google Scholar] [CrossRef]
- Zournatzis, I.; Kalaitzakis, S.; Polygerinos, P. SoftER: A Spiral Soft Robotic Ejector for Sorting Applications. IEEE Robot. Autom. Lett. 2023, 8, 7098–7105. [Google Scholar] [CrossRef]
- García-Samartín, J.F.; Molina-Gómez, R.; Barrientos, A. Model-Free Control of a Soft Pneumatic Segment. Biomimetics 2024, 9, 127. [Google Scholar] [CrossRef]
- Elsamanty, M.; Hassaan, M.A.; Orban, M.; Guo, K.; Yang, H.; Abdrabbo, S.; Selmy, M. Soft Pneumatic Muscles: Revolutionizing Human Assistive Devices with Geometric Design and Intelligent Control. Micromachines 2023, 14, 1431. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Y.; Jia, F. A Neural Network Based Dynamic Control Method for Soft Pneumatic Actuator with Symmetrical Chambers. Actuators 2021, 10, 112. [Google Scholar] [CrossRef]
- Piqué, F.; Kalidindi, H.T.; Fruzzetti, L.; Laschi, C.; Menciassi, A.; Falotico, E. Controlling Soft Robotic Arms Using Continual Learning. IEEE Robot. Autom. Lett. 2022, 7, 5469–5476. [Google Scholar] [CrossRef]
- Salem, M.E.M.; Wang, Q.; Xu, M.H. Application of neural network fitting for modeling the pneumatic networks bending soft actuator behavior. Eng. Res. Express 2022, 4, 015032. [Google Scholar] [CrossRef]
- Sun, W.; Akashi, N.; Kuniyoshi, Y.; Nakajima, K. Physics-Informed Recurrent Neural Networks for Soft Pneumatic Actuators. IEEE Robot. Autom. Lett. 2022, 7, 6862–6869. [Google Scholar] [CrossRef]
- Chiang, C.J.; Chen, Y.C. Neural network fuzzy sliding mode control of pneumatic muscle actuators. Eng. Appl. Artif. Intell. 2017, 65, 68–86. [Google Scholar] [CrossRef]
- Chen, C.; Cao, Y.; Chen, X.; Wu, D.; Xiong, C.; Huang, J. A Fused Deep Fuzzy Neural Network Controller and Its Application to Pneumatic Flexible Joint. IEEE/ASME Trans. Mechatron. 2023, 28, 3214–3225. [Google Scholar] [CrossRef]
- Acosta, R.; Tafur, J.; Canahuire, R. Self-Tuning Neural Network Controller Based on Fuzzy Logic for Multiple Positions Tracking of a Pneumatic Driven Soft Endoscope Actuator. In Proceedings of the 2024 10th International Conference on Automation, Robotics and Applications (ICARA), Athens, Greece, 22–24 February 2024; pp. 466–471. [Google Scholar]
- Available online: https://www.telematicaricambi.it/iphone-11-pro/954-fotocamera-posteriore-back-camera-apple-iphone-11-pro-flex-a2160-a2217-a2215.html (accessed on 20 August 2024).
- Available online: https://it.mathworks.com/help/vision/ref/undistortimage.html (accessed on 10 June 2024).
- Available online: https://it.mathworks.com/help/images/ref/imlocalbrighten.html (accessed on 11 June 2024).
- Goodfellow, I. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
Symbol | Name | Values | Unit |
---|---|---|---|
P | Feeding Pressure | 0.0–1.2 | (bar) |
L | Segment Length | 4.0–10.0 | (mm) |
R | Ratio Open—Total | 0.25–0.75 | - |
Θ | Closing Angle | 40–120 | (°) |
Reinforcement | L (mm) | R (-) | Θ (°) | Reinforcement | L (mm) | R (-) | Θ (°) | Reinforcement | L (mm) | R (-) | Θ (°) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4 | 0.25 | 40 | 10 | 4 | 0.25 | 70 | 19 | 4 | 0.25 | 100 |
2 | 7 | 0.25 | 40 | 11 | 7 | 0.25 | 70 | 20 | 7 | 0.25 | 100 |
3 | 10 | 0.25 | 40 | 12 | 10 | 0.25 | 70 | 21 | 10 | 0.25 | 100 |
4 | 4 | 0.50 | 40 | 13 | 4 | 0.50 | 70 | 22 | 4 | 0.50 | 100 |
5 | 7 | 0.50 | 40 | 14 | 7 | 0.50 | 70 | 23 | 7 | 0.50 | 100 |
6 | 10 | 0.50 | 40 | 15 | 10 | 0.50 | 70 | 24 | 10 | 0.50 | 100 |
7 | 5 | 0.35 | 50 | 16 | 10 | 0.50 | 85 | 25 | 10 | 0.65 | 120 |
8 | 7 | 0.75 | 40 | 17 | 7 | 0.75 | 70 | 26 | 7 | 0.75 | 100 |
9 | 10 | 0.75 | 40 | 18 | 10 | 0.75 | 70 | 27 | 10 | 0.75 | 100 |
Algorithm | Training RMSE (°) | Validation RMSE (°) | Training Time (s) | Model Size (kB) |
---|---|---|---|---|
Coarse Tree | 3.84 | 3.35 | 10.90 | 3 |
Medium Tree | 2.68 | 1.84 | 12.05 | 4 |
Fine Tree | 2.12 | 2.51 | 13.34 | 8 |
Linear SVM | 2.50 | 1.99 | 8.89 | 8 |
Quadratic SVM | 1.48 | 1.37 | 7.37 | 6 |
Cubic SVM | 1.38 | 1.22 | 6.79 | 6 |
Medium Gaussian SVM | 1.62 | 1.35 | 25.31 | 6 |
Coarse Gaussian SVM | 2.44 | 1.89 | 24.20 | 7 |
SVM Kernel | 3.37 | 2.48 | 5.20 | 9 |
Efficient Linear Least Square | 2.38 | 1.97 | 22.95 | 11 |
Boosted Trees | 1.84 | 1.49 | 10.90 | 153 |
Bagged Trees | 2.07 | 1.33 | 8.71 | 165 |
Wide Neural Network | 0.92 | 0.98 | 10.54 | 10 |
Bilayered Neural Network | 0.83 | 0.73 | 3.07 | 12 |
Reinforcement | Joint | Parameters | |||
---|---|---|---|---|---|
L (mm) | R (-) | Θ (°) | N (-) | ||
I | 1 | 5.0 | 0.65 | 82 | 6 |
II | 1 | 10.0 | 0.70 | 70 | 3 |
2 | 10.0 | 0.60 | 70 | 2 | |
3 | 5.0 | 0.60 | 70 | 2 | |
III | 1 | 5.2 | 0.50 | 60 | 2 |
2 | 5.2 | 0.60 | 54 | 2 | |
3 | 10.0 | 0.65 | 86 | 2 | |
4 | 8.0 | 0.40 | 74 | 2 | |
5 | 8.0 | 0.60 | 64 | 2 |
Reinforcement | Joint | 0.4 bar | 0.8 bar | 1.2 bar | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
αexp | αBNN | ΔαBNN | αRSM | ΔαRSM | αexp | αBNN | ΔαBNN | αRSM | ΔαRSM | αexp | αBNN | ΔαBNN | αRSM | ΔαRSM | ||
I | 1 | 20.82 | 18.00 | 2.82 | 25.80 | −4.98 | 45.82 | 45.42 | 0.40 | 51.60 | −5.78 | 80.88 | 85.82 | −4.94 | 78.00 | 2.88 |
II | 1 | 15.45 | 12.66 | 2.79 | 24.30 | −8.85 | 44.75 | 40.49 | 4.26 | 49.20 | −4.45 | 73.10 | 71.51 | 1.59 | 74.10 | −1.00 |
2 | 10.86 | 9.22 | 1.64 | 16.20 | −5.34 | 24.60 | 27.53 | −2.93 | 32.40 | −7.80 | 45.56 | 51.52 | −6.06 | 49.00 | −3.54 | |
3 | 8.18 | 8.81 | −0.63 | 9.26 | −1.08 | 16.14 | 14.36 | 1.78 | 18.64 | −2.50 | 27.75 | 31.30 | −3.55 | 28.12 | 0.63 | |
III | 1 | 6.57 | 5.94 | 0.63 | 9.40 | −2.83 | 22.76 | 14.56 | 8.20 | 19.00 | 3.76 | 30.49 | 27.63 | 2.86 | 28.60 | 1.89 |
2 | 10.94 | 5.58 | 5.36 | 10.06 | 0.88 | 20.87 | 14.70 | 6.17 | 20.24 | 0.63 | 33.52 | 28.09 | 5.43 | 30.56 | 2.96 | |
3 | 10.36 | 7.36 | 3.00 | 16.20 | −5.84 | 27.97 | 23.86 | 4.11 | 32.41 | −4.44 | 48.23 | 48.13 | 0.10 | 49.00 | −0.77 | |
4 | 10.22 | 9.37 | 0.85 | 12.70 | −2.48 | 26.93 | 27.28 | −0.35 | 25.54 | 1.39 | 45.55 | 44.64 | 0.91 | 38.56 | 6.99 | |
5 | 8.50 | 7.48 | 1.02 | 13.54 | −5.04 | 23.77 | 22.45 | 1.32 | 27.24 | −3.47 | 44.89 | 45.21 | −0.32 | 41.12 | 3.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonelli, M.G.; Beomonte Zobel, P.; Mattei, E.; Stampone, N. A Methodology for the Mechanical Design of Pneumatic Joints Using Artificial Neural Networks. Appl. Sci. 2024, 14, 8324. https://doi.org/10.3390/app14188324
Antonelli MG, Beomonte Zobel P, Mattei E, Stampone N. A Methodology for the Mechanical Design of Pneumatic Joints Using Artificial Neural Networks. Applied Sciences. 2024; 14(18):8324. https://doi.org/10.3390/app14188324
Chicago/Turabian StyleAntonelli, Michele Gabrio, Pierluigi Beomonte Zobel, Enrico Mattei, and Nicola Stampone. 2024. "A Methodology for the Mechanical Design of Pneumatic Joints Using Artificial Neural Networks" Applied Sciences 14, no. 18: 8324. https://doi.org/10.3390/app14188324
APA StyleAntonelli, M. G., Beomonte Zobel, P., Mattei, E., & Stampone, N. (2024). A Methodology for the Mechanical Design of Pneumatic Joints Using Artificial Neural Networks. Applied Sciences, 14(18), 8324. https://doi.org/10.3390/app14188324