Biosynthesis of Silver Nanoparticles Using Barleria albostellata C.B. Clarke Leaves and Stems: Antibacterial and Cytotoxic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.1.1. Preparation of the Methanolic Crude Extract
2.1.2. Fresh Aqueous Extract
2.1.3. Powdered Aqueous Extract
2.1.4. Synthesis of AgNPs
2.1.5. Quantification of AgNPs
2.1.6. Characterisation of AgNPs
- UV-visible spectroscopy
- Ultra Plus field emission gun Scanning electron microscopy (SEM)
- Energy-dispersive X-ray spectroscopy (EDX)
- High-resolution transmission electron microscopy (HRTEM)
- Nanoparticle Tracking Analysis (NTA)
- Fourier transform infrared spectroscopy (FTIR)
2.1.7. Antibacterial Bioassays
- Test microorganisms
- Preparation of sample
- Preparation of culture media and bacterial cultures
2.1.8. In Vitro Cytotoxicity/MTT Assays
- Cell cultures
- MTT (cell viability) assay protocol
2.1.9. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of AgNPs and UV Characterisation
3.2. Scanning Electron Microscopy and EDX Analysis
3.3. High-Resolution Transmission Electron Microscopy of Synthesized AgNPs
3.4. Nanoparticle Tracking Analysis (NTA)
3.5. Fourier-Transform Infrared Spectroscopy of Synthesized AgNPs
3.6. Antibacterial Activity of Synthesized AgNPs from Various Leaf and Stem Extracts
3.7. In Vitro Cytotoxic Effect on Cancerous Cell Lines Using Synthesized AgNPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khatoon, N.; Mazumder, J.A.; Sardar, M. Biotechnological applications of green synthesized silver nanoparticles. J. Nanosci. Curr. Res. 2017, 2, 2572–2813. [Google Scholar] [CrossRef]
- Pirtarighat, S.; Ghannadnia, M.; Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2020, 19, 355–374. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef]
- Viswanathan, S.; Palaniyandi, T.; Shanmugam, R.; Karunakaran, S.; Pandi, M.; Wahab, M.R.A.; Baskar, G.; Rajendran, B.K.; Sivaji, A.; Moovendhan, M. Synthesis, characterization, cytotoxicity, and antimicrobial studies of green synthesized silver nanoparticles using red seaweed Champia parvula. Biomass Convers. Biorefin. 2024, 14, 7387–7400. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 2012, 9, 217–223. [Google Scholar] [CrossRef]
- Singh, T.; Singh, A.; Wang, W.; Yadav, D.; Kumar, A.; Singh, P.K. Biosynthesized nanoparticles and its implications in agriculture. In Biological Synthesis of Nanoparticles and Their Applications; CRC Press: Boca Raton, FL, USA, 2019; pp. 257–274. [Google Scholar]
- Pal, G.; Rai, P.; Pandey, A. Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green Synthesis, Characterization and Applications of Nanoparticles SBT-GS Micro and Nano Technologies; Shukla, A.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–26. [Google Scholar]
- Ghosh, S.; Chacko, M.J.; Harke, A.N.; Gurav, S.P.; Joshi, K.A.; Dhepe, A.; Kulkarni, A.S.; Shinde, V.S.; Parihar, V.S.; Asok, A.; et al. Barleria prionitis leaf mediated synthesis of silver and gold nanocatalysts. J. Nanomed. Nanotechnol. 2016, 7, 394. [Google Scholar] [CrossRef]
- Thuesombat, P.; Hannongbua, S.; Akasit, S.; Chadchawan, S. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol. Environ. Saf. 2014, 104, 302–309. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- Ahmed, S.; Chaudhry, S.A.; Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B Biol. 2017, 166, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Gardea-Torresdey, J.L.; Parsons, J.G.; Gomez, E.; Peralta-Videa, J.; Troiani, H.E.; Santiago, P.; Jose Yacaman, M. Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Lett. 2002, 2, 397–401. [Google Scholar] [CrossRef]
- Shankar, S.S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003, 19, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 2006, 22, 577–583. [Google Scholar] [CrossRef]
- Smitha, S.L.; Philip, D.; Gopchand, K.G. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectronochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 74, 735–739. [Google Scholar] [CrossRef]
- Zhu, K.; Ju, Y.; Xu, J.; Yang, Z.; Gao, S.; Hou, Y. Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Acc. Chem. Res. 2018, 51, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N.J.C.S.B.B. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces 2010, 76, 50–56. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; El-Shabasy, R.M.; Khalifa, S.A.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F.J.; Abdel-Daim, M.M.; Omri, A.; Hajrahand, N.H.; et al. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC. Adv. 2019, 9, 24539–24559. [Google Scholar] [CrossRef]
- MR, K.P.; Iyer, P.R. Antiproliferative effects on tumor cells of the synthesized gold nanoparticles against Hep2 liver cancer cell line. Egypt Liver J. 2020, 10, 15. [Google Scholar]
- Lee, H.J.; Lee, G.; Jang, N.R.; Yun, J.H.; Song, J.Y.; Kim, B.S. Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 2011, 1, 371–374. [Google Scholar]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Cho, M.H. Antimicrobial effects of silver nanoparticles. Nano Med. NBM 2007, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- Azócar, M.I.; Alarcón, R.; Castillo, A.; Blamey, J.M.; Walter, M.; Paez, M. Capping of silver nanoparticles by anti-inflammatory ligands: Antibacterial activity and superoxide anion generation. J. Photochem. Photobiol. B Biol. 2019, 193, 100–108. [Google Scholar] [CrossRef]
- Lee, K.S.; El-Sayed, M.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity and plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cancer Key Facts. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 3 September 2021).
- Jamison, D.T.; Feachem, R.G.; Makgoba, M.W. Disease and Mortality in Sub-Saharan Africa; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Zhang, Y.; Hong, H.; Cai, W. Tumor-targeted drug delivery with aptamers. Curr. Med. Chem. 2011, 18, 4185–4194. [Google Scholar] [CrossRef]
- Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastas. 2018, 35, 309–318. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control Release 2014, 190, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Y.; Ju, D. Application of nanomaterials for cancer diagnosis and therapy. In Green Synthesis of Nanoparticles: Applications and Prospects; Springer: Singapore, 2020; pp. 121–140. [Google Scholar]
- Mandal, S.M.; Roy, A.; Mahata, D.; Migliolo, L.; Nolasco, D.O.; Franco, O.L. Functional and structural insights on self-assembled nanofiber-based novel antibacterial ointment from antimicrobial peptides, bacitracin and gramicidin S. J. Antibiot. 2014, 67, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K.; Prasad, K.; Prasad, K.; Kulkarni, A.R. Plant system: Nature’s nanofactory. Colloids Surf. B Biointerfaces 2009, 73, 219–223. [Google Scholar] [CrossRef]
- Chandirika, J.U.; Annadurai, G. Biosynthesis and characterization of silver nanoparticles using leaf extract Abutilon indicum. Glob. J. Biotechnol. Biochem. 2018, 13, 7–11. [Google Scholar]
- Vasanth, K.; Ilango, K.; Mohan-Kumar, R.; Agrawal, A.; Dubey, G.P. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf. B Biointerfaces 2014, 117, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Hembram, K.C.; Kumar, R.; Kandha, L.; Parhi, P.K.; Kundu, C.N.; Bindhani, B.K. Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 2018, 46, S38–S51. [Google Scholar] [CrossRef]
- Larue, C.; Castillo-Michel, H.; Sobanska, S.; Cécillon, L.; Bureau, S.; Barthès, V.; Ouerdane, L.; Carrière, M.; Sarret, G. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: Evidence for internalization and changes in Ag speciation. J. Hazard. Mater. 2014, 264, 98–106. [Google Scholar] [CrossRef]
- Mussin, J.; Robles-Botero, V.; Casañas-Pimentel, R.; Rojas, F.; Angiolella, L.; Martín-Martínez, S.; Giusiano, G. Antimicrobial an cytotoxic activity of green synthesis silver nanoparticles targeting skin and soft tissue infectious agents. Sci Rep. 2021, 11, 14566. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kumar, S.; Bulchandini, B.; Taneja, S.; Banyal, S. Green synthesis of silver nanoparticles and their antimicrobial activity against Gram positive and Gram negative bacteria. Int. J. Biotechnol. Mol. Biol. Res. 2013, 4, 711–714. [Google Scholar]
- Begum, M.Y.; Sirisha, C.H.; Reddy, G.P. Nanoparticulate drug delivery system-an overview. Int. J. Biotechnol. Mol. Biol. Res. 2017, 1, 15–25. [Google Scholar]
- Chinnasamy, C.; Tamilselvan, P.; Karthik, V.; Karthik, B. Optimization and characterization studies on green synthesis of silver nanoparticles using response surface methodology. J. Adv. Res. Nat. Appl. Sci. 2017, 11, 214–221. [Google Scholar]
- Maddila, S.; Hemalatha, K.P.J. Phytochemical screening and in vitro antimicrobial properties of crude leaf extracts of Wrightia tinctoria R.Br. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 707–720. [Google Scholar] [CrossRef]
- Nguyen, N.P.U.; Dang, N.T.; Doan, L.; Nguyen, T.T.H. Synthesis of Silver Nanoparticles: From Conventional to ‘Modern’ Methods—A Review. Processes 2023, 11, 2617. [Google Scholar] [CrossRef]
- Vishwanath, R.; Negi, B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr. Res. Green Sustain. Chem. 2021, 4, 100205. [Google Scholar] [CrossRef]
- Salam, H.A.; Rajiv, P.; Kamaraj, M.; Jagadeeswaran, P.; Gunalan, S.; Sivaraj, R. Plants: Green route for nanoparticle synthesis. Int. Res. J. Biol. Sci. 2012, 1, 85–90. [Google Scholar]
- Froneman, W.; Le Roux, L.N. Barleria albostellata. 2007. Available online: http://pza.sanbi.org/barleria-albostellata (accessed on 2 February 2019).
- Amoo, S.O.; Finnie, J.F.; Van Staden, J. In vitro pharmacological evaluation of three Barleria species. J. Ethnopharmacol. 2009, 121, 274–277. [Google Scholar] [CrossRef] [PubMed]
- Yosook, C.; Panpisutchai, Y.; Chaichana, S.; Santisuk, T.; Reutrakul, V. Evaluation of anti-HSV-2 activities of Barleria lupulina and Clinacanthus nutans. J. Ethnopharmacol. 1999, 67, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.U.; Wu, M.; Perchellet, E.M.; Mcilvain, C.J.; Sperfslage, B.J.; Huang, X.; Tamura, M.; Stephany, H.A.; Hua, D.H.; Perchellet, J.P. Asynthetic triptycene bisquinone which blocks nucleoside transport and induces DNA fragmentation, retains its cytotoxic efficacy in daunorubicin-resistant HL-60 cell lines. Int. J. Oncol. 2001, 19, 1169–1178. [Google Scholar] [PubMed]
- Jassim, S.A.A.; Naji, A.M. Novel antiviral agents: A medicinal plant perspective. J. Appl. Microbiol. 2003, 95, 412–427. [Google Scholar] [CrossRef] [PubMed]
- Suba, V.; Murugesan, T.; Arunachalam, G.; Mandal, S.C.; Saha, B.P. Anti-diabetic potential of Barleria lupulina extract in rats. Phytomedicine 2004, 11, 202–205. [Google Scholar] [CrossRef]
- Suba, V.; Murugesan, T.; Kumaravelrajan, R.; Mandal, S.C.; Saha, B.P. Antiinflammatory, analgesic and antiperoxidative efficacy of Barleria lupulina Lindl. extract. Phytother. Res. 2005, 19, 695–699. [Google Scholar] [CrossRef]
- Chomnawang, M.T.; Surassmo, S.; Nukoolkarn, V.S.; Gritsanapan, W. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol. 2005, 101, 330–333. [Google Scholar] [CrossRef]
- Shukla, S.; Gunjegaokar, S.M. Pharmacognostical and pharmacological profiling of Barleria prionitis Linn. J. Biol. Sci. Med. 2018, 4, 41–50. [Google Scholar]
- Gangaram, S.; Naidoo, Y.; Dewir, Y.H.; Singh, M.; Lin, J.; Murthy, H.N. Phytochemical Composition and Antibacterial Activity of Barleria albostellata C.B. Clarke Leaf and Stem Extracts. Plants 2023, 12, 2396. [Google Scholar] [CrossRef]
- Gangaram, S.; Naidoo, Y.; Dewir, Y.H.; Singh, M.; Daniels, A.N.; Magyar-Tábori, K.; Mendler-Drienyovszki, N. Antiox-idant and Cytotoxic Activities of Leaf and Stem Extracts of Barleria albostellata CB Clarke. Horticulturae 2023, 9, 1226. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Kannan, R.R.R.; Stirk, W.A.; Van Staden, J. Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C Silva (Chlorophyceae). S. Afr. J. Bot. 2013, 86, 1–4. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. Facile biosynthesis of silver nanoparticles using Barleria cristata: Mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol. Res. 2016, 115, 925–935. [Google Scholar] [CrossRef]
- Cittrarasu, V.; Balasubramanian, B.; Kaliannan, D.; Park, S.; Maluventhan, V.; Kaul, T.; Liu, W.C.; Arumugam, M. Biological mediated Ag nanoparticles from Barleria longiflora for antimicrobial activity and photocatalytic degradation using methylene blue. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2424–2430. [Google Scholar] [CrossRef]
- Premasudha, P.; Venkataramana, M.; Abirami, M.; Vanathi, P.; Krishna, K.; Rajendran, R. Biological synthesis and characterization of silver nanoparticles using Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. Bull. Mater. Sci. 2015, 38, 965–973. [Google Scholar] [CrossRef]
- Gunasekaran, K.; Nirmala, M.; Raja, K.; Saravanakumar, A. Characterization and application of biosynthesized silver nanoparticles from Melia dubia leaves. Ind. J. Geo-Mar. Sci. 2017, 46, 1715–1720. [Google Scholar]
- Moodley, J.S.; Krishna, S.B.N.; Pillay, K.; Govender, P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 015011. [Google Scholar] [CrossRef]
- Daniels, A.N.; Singh, M. Sterically stabilized siRNA: Gold nanocomplexes enhance c-MYC silencing in a breast cancer cell model. Nanomedicine 2019, 14, 1387–1401. [Google Scholar] [CrossRef]
- Mosman, T. Rapid colourimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Vinken, M.; Blaauboer, B.J. In vitro testing of basal cytotoxicity: Establishment of an adverse outcome pathway from chemical insult to cell death. Toxicol. In Vitro 2017, 39, 104–110. [Google Scholar] [CrossRef]
- Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996, 12, 788–800. [Google Scholar] [CrossRef]
- Jensen, T.R.; Schatz, G.C.; Van Duyne, R.P. Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet−visible extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. 1999, 103, 2394–2401. [Google Scholar] [CrossRef]
- Heemasagar, D.; Jeeva, K.; Sureshkumar, M. Enhanced anti-microbial activity of honey with green synthesized AgNps by using Tabernaemontana coronaria (JACQ.) wild flower extract. Am. J. PharmTech Res. 2014, 4, 1–12. [Google Scholar]
- Jiang, X.; Chen, W.; Chen, C.; Xiong, S.; Yu, A. Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett. 2011, 6, 32. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Kumar, H.A.K.; Mandal, B.K. Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes. J. Environ. Chem. Eng. 2016, 4, 56–64. [Google Scholar] [CrossRef]
- De Aragaõ, A.P.; De Oliveira, T.M.; Quelemes, P.V.; Perfeito, M.L.G.; Arauĵo, M.C.; Santiago, J.D.A.S.; Cardoso, V.S.; Quaresma, P.; De Souza De Almeida Leite, J.R.; Da Silva, D.A. Greensynthesis of silver nanoparticles using the seaweed Gracilariabirdiae and their antibacterial activity. Arab. J. Chem. 2019, 12, 4182–4188. [Google Scholar] [CrossRef]
- MubarakAli, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B Biointerfaces 2011, 85, 360–365. [Google Scholar] [CrossRef]
- Gomathi, M.; Rajkumar, P.V.; Prakasam, A. Study of dislocation density (defects such as Ag vacancies and interstitials) of silver nanoparticles, green-synthesized using Barleria cristata leaf extract and the impact of defects on the antibacterial activity. Results Phys. 2018, 10, 858–864. [Google Scholar] [CrossRef]
- Bello, B.A.; Khan, S.A.; Khan, J.A.; Syed, F.Q.; Mirza, M.B.; Shah, L.; Khan, S.B. Anticancer, antibacterial and pollutant degradation potential of silver nanoparticles from Hyphaene thebaica. Biochem. Biophys. Res. Commun. 2017, 490, 889–894. [Google Scholar] [CrossRef]
- Ahluwalia, V.; Kumar, J.; Sisodia, R.; Shakil, N.A.; Walia, S. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind. Crop. Prod. 2014, 55, 202–206. [Google Scholar] [CrossRef]
- Muthukrishnan, S.; Bhakya, S.; Kumar, T.S.; Rao, M.V. Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii—An endemic species. Ind. Crop. Prod. 2015, 63, 119–124. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, S.C.; Yadav, S.K. Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J. Chem. Technol. Biotechnol. 2010, 85, 1301–1309. [Google Scholar] [CrossRef]
- Patel, N. Biosynthesis and Antibacterial Activity of Silver and Gold Nanoparticles from the Leaf and Callus Extracts of Amaranthus dubius, Gunnera perpensa, Ceratotheca triloba and Catharanthus roseus. Ph.D. Thesis, Durban University of Technology, Durban, South Africa, 2013. [Google Scholar]
- Shao, F.; Yang, A.; Yu, D.M.; Wang, J.; Gong, X.; Tian, H.X. Bio-synthesis of Barleria gibsoni leaf extract mediated zinc oxide nanoparticles and their formulation gel for wound therapy in nursing care of infants and children. J. Photochem. Photobiol. B 2018, 189, 267–273. [Google Scholar] [CrossRef]
- Nayak, D.; Pradhan, S.; Ashe, S.; Rauta, P.R.; Nayak, B. Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma. J. Colloid Interface Sci. 2015, 457, 329–338. [Google Scholar] [CrossRef]
- Verma, A.; Mehata, M.S. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 2016, 9, 109–115. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Narasimha, G.; Dillip, G.R.; Praveen, B.; Shreedhar, B.; Shree Lakshmi, C.; Reddy, B.V.S.; Deva Prasad Raju, B. Green synthesis of silver nanoparticles using Ocimim leaf extract and their characterization. Digest J. Nanomater. Biostruct. 2011, 6, 181–186. [Google Scholar]
- Restrepo, C.V.; Villa, C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100428. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Akinyelu, J.; Singh, M. Folate-tagged chitosan functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells. Appl. Nanosci. 2019, 9, 7–17. [Google Scholar] [CrossRef]
- Oladimeji, O.; Akinyelu, J.; Daniels, A.; Singh, M. Modified Gold Nanoparticles for efficient delivery of Betulinic Acid to cancer cell mitochondria. Int. J. Mol. Sci. 2021, 22, 5072. [Google Scholar] [CrossRef]
- Honary, S.; Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems—A review (Part 1). Trop. J. Pharm. Res. 2013, 12, 255–264. [Google Scholar]
- Joseph, E.; Singhvi, G. Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. Nanomed. Drug Deliv. Ther. 2019, 91–116. [Google Scholar]
- Griffiths, D.; Bernt, W.; Hole, P.; Smith, J.; Malloy, A.; Carr, B. Zeta potential measurement of nanoparticles by nanoparticle tracking analysis (NTA). NSTI-Nanotech 2011, 1, 4–7. [Google Scholar]
- Hunter, R.J. Zeta Potential in Colloid Science: Principles and Applications; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Freitas, C.; Müller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int. J. Pharm. 1998, 168, 221–229. [Google Scholar] [CrossRef]
- Shah, R.; Eldridge, D.; Palombo, E.; Harding, I. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J. Phys. Sci. 2014, 25, 59–75. [Google Scholar]
- Chorom, M.; Rengasamy, P. Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type. Eur. J. Soil Sci. 1995, 46, 657–665. [Google Scholar] [CrossRef]
- Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 2010, 45, 1065–1071. [Google Scholar] [CrossRef]
- Basnet, P.; Amarasiriwardena, D.; Wu, F.; Fu, Z.; Zhang, T. Investigation of tissue level distribution of functional groups and associated trace metals in rice seeds (Oryza sativa L.) using FTIR and LA-ICP-MS. Microchem. J. 2016, 127, 152–159. [Google Scholar] [CrossRef]
- Shanmugam, V.; Selvakumar, S.; Yeh, C.S. Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem. Soc. Rev. 2014, 43, 6254–6287. [Google Scholar] [CrossRef]
- Marimuthu, S.; Rahuman, A.A.; Rajakumar, G.; Santhoshkumar, T.; Kirthi, A.V.; Jayaseelan, C.; Bagavan, A.; Zahir, A.A.; Elango, G.; Kamaraj, C. Evaluation of green synthesized silver nanoparticles against parasites. Parasit. Res. 2011, 108, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Chand, K.; Cao, D.; Fouad, D.E.; Shah, A.H.; Dayo, A.Q.; Zhu, K.; Lakhan, M.N.; Mehdi, G.; Dong, S. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab. J. Chem. 2020, 13, 8248–8261. [Google Scholar] [CrossRef]
- Heneczkowski, M.; Kopacz, M.; Nowak, D.; Kuzniar, A. Infrared spectrum analysis of some flavonoids. Acta Pol. Pharm. 2001, 58, 415–420. [Google Scholar]
- Firdhouse, M.J.; Lalitha, P. Phyto-assisted synthesis and characterization of silver nanoparticles from Amaranthus dubius. Int. J. Appl. Biol. Pharm. Technol. 2012, 3, 96–101. [Google Scholar]
- Sivakumar, J.; Premkumar, C.; Santhanam, P.; Saraswathi, N. Biosynthesis of silver nanoparticles using Calotropis gigantean leaf. Afr. J. Basic Appl. Sci. 2011, 3, 265–270. [Google Scholar]
- Devaraj, P.; Kumari, P.; Aarti, C.; Renganathan, A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J. Nanotechnol. 2013, 2013, 598328. [Google Scholar] [CrossRef]
- Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 168. [Google Scholar] [CrossRef]
- Tamayo, L.A.; Zapata, P.A.; Vejar, N.D.; Azocar, M.I.; Gulppi, M.A.; Zhou, X.; Thompson, G.E.; Rabagliati, F.M.; Paez, M.A. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater. Sci. Eng. Mater. 2014, 40, 24–31. [Google Scholar] [CrossRef]
- Wu, D.; Fan, W.; Kishen, A.; Gutmann, J.L.; Fan, B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J. Endod. 2014, 40, 285–290. [Google Scholar] [CrossRef]
- Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 37–45. [Google Scholar] [CrossRef]
- Sun, Q.; Cai, X.; Li, J.; Zheng, M.; Chen, Z.; Yu, C.P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 226–231. [Google Scholar] [CrossRef]
- Mohammadi, G.; Valizadeh, H.; Barzegar-Jalali, M.; Lotfipour, F.; Adibkia, K.; Milani, M.; Azhdarzadeh, M.; Kiafar, F.; Nokhodchi, A. Development of azithromycin–PLGA nanoparticles: Physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf. B Biointerfaces 2010, 80, 34–39. [Google Scholar] [CrossRef]
- Seil, J.T.; Webster, T.J. Antimicrobial applications of nanotechnology: Methods and literature. Int. J. Nanomed. 2012, 7, 2767–2781. [Google Scholar]
- Kvítek, L.; Panáček, A.; Soukupova, J.; Kolář, M.; Večeřová, R.; Prucek, R.; Holecová, M.; Zbořil, R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. 2008, 112, 5825–5834. [Google Scholar] [CrossRef]
- Collins, T.L.; Markus, E.A.; Hassett, D.J.; Robinson, J.B. The effect of a cationic porphyrin on Pseudomonas aeruginosa biofilms. Curr. Microb. 2010, 61, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; de Aberasturi, D.J.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Umashankari, J.; Inbakandan, D.; Ajithkumar, T.T.; Balasubramanian, T. Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aqua. Biosys. 2012, 8, 11. [Google Scholar] [CrossRef]
- Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006, 5, 916–924. [Google Scholar] [CrossRef]
- Iavicoli, I.; Fontana, L.; Leso, V.; Bergamaschi, A. The effects of nanomaterials as endocrine disruptors. Int. J. Mol. Sci. 2013, 14, 16732–16801. [Google Scholar] [CrossRef]
- Yun, H.; Kim, J.D.; Choi, H.C.; Lee, C.W. Antibacterial activity of CNT-Ag and GO-Ag nanocomposites against gram-negative and gram-positive bacteria. Bull. Korean Chem. Soc. 2013, 34, 3261–3264. [Google Scholar] [CrossRef]
- Egger, S.; Lehmann, R.P.; Height, M.J.; Loessner, M.J.; Schuppler, M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 2009, 75, 2973–2976. [Google Scholar] [CrossRef] [PubMed]
- Safavi, K. Evaluation of using nanomaterial in tissue culture media and biological activity. In Proceedings of the Second International Conference on Ecological, Environmental and Biological, Sciences, Bali, Indonesia, 13–14 October 2012. [Google Scholar]
- Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: The MTT assay. In Cancer Cell Culture; Cree, I., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 237–245. [Google Scholar]
- Parasuraman, S. Toxicological screening. J. Pharmacol. Pharmacother. 2011, 2, 74–79. [Google Scholar]
- Sutradhar, K.B.; Amin, M. Nanotechnology in cancer drug delivery and selective targeting. Int. J. Nanotechnol. 2014, 2014, 939378. [Google Scholar] [CrossRef]
- Fernandes, C.; Suares, D.; Yergeri, M.C. Tumor microenvironment targeted nanotherapy. Front. Pharmacol. 2018, 9, 1230. [Google Scholar] [CrossRef]
- Chen, X.; Schluesener, H.J. Nanosilver: A nanoproduct in medical application. Toxicol. Lett. 2008, 176, 1–12. [Google Scholar] [CrossRef]
- Park, E.J.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro 2010, 24, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Sanpui, P.; Chattopadhyay, A.; Ghosh, S.S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl. Mater. Interfaces 2011, 3, 218–228. [Google Scholar] [CrossRef]
- Jeyaraj, M.; Rajesh, M.; Arun, R.; MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N.; et al. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf. B Biointerfaces 2013, 102, 708–717. [Google Scholar] [CrossRef]
Crude Extract | Leaves | Stem | Leaves | Stem |
---|---|---|---|---|
Dried AgNPs Yield (g) | Percentage Yield (%) | |||
Methanol | 0.032 | 0.030 | 0.32 | 0.30 |
Fresh | 0.030 | 0.010 | 0.12 | 0.04 |
Powdered | 0.026 | 0.050 | 0.26 | 0.50 |
Type of Extract | Average % Weight |
---|---|
Methanol leaf | 16.87 ± 0.89 |
Methanol stem | 14.78 ± 3.53 |
Fresh leaf | 9.47 ± 1.38 |
Fresh stem | 8.12 ± 0.71 |
Powdered leaf | 8.85 ± 1.09 |
Powdered stem | 7.13 ± 1.44 |
Sample (AgNPs) | Nanoparticle Size (nm) (Mean + Standard Error) | Zeta Potential (mV) (Mean + Standard Error) |
---|---|---|
Methanol leaf | 111.3 ± 4.4 | −33.2 ± 0.1 |
Methanol stem | 110.7 ± 4.2 | −28.2 ± 0.0 |
Fresh leaf | 53.9 ± 8.4 | −8.8 ± 0.2 |
Fresh stem | 37.7 ± 0.9 | −17.2 ± 0.0 |
Powdered leaf | 57.9 ± 0.6 | −17.0 ± 0.0 |
Powdered stem | 34.3 ± 0.2 | −16.8 ± 0.1 |
Plant Extract | Absorption Frequency (cm−1) | Types of Absorption/ Vibration | Functional Group | Compound Class |
---|---|---|---|---|
Leaf methanol | 3273.31 | Stretch | O-H | Alcohol |
2927.50 | Stretch | C–H | Alkane | |
2346.67 | Stretch | O=C=O | Carbon dioxide | |
2119.29 | Symmetrical | C≡C | alkynes | |
1622.25 | Stretch | C=C | Conjugated alkene | |
1393.67 | Bending | C–H | Aldehyde | |
1333.55 | Bending | O-H | Alcohol | |
1287.63 | Stretch | N-O | Nitro | |
1034.01 | Stretch | S=O | sulfoxide | |
897.23 | Bending | C=C | Alkene | |
813.23 | Bending | C=C | Alkene | |
Stem methanol | 3330.48 | Stretch | N-H | Aliphatic primary amine |
3276.33 | Stretch | O-H | Alcohol | |
2347.91 | Stretch | O=C=O | Carbon dioxide | |
2119.13 | Stretch | N=C=N | Carbodiimide | |
1619.30 | Stretch | C=C | α,β-unsaturated ketone | |
1474.26 | Bending | C-H | Alkane | |
1392.44 | Bending | O-H | Phenol | |
1332.30 | Stretch | C-N | Aromatic amine | |
1041.01 | Stretch | CO-O-CO | Anhydride | |
932.56 | Bending | C=C | Alkene | |
895.77 | Bending | C=C | Alkene | |
Fresh leaf | 3397.89 | Stretch | N-H | Aliphatic primary amine |
3370.78 | Stretch | N-H | Aliphatic primary amine | |
2331.58 | Stretch | O=C=O | Carbon dioxide | |
2122.09 | Stretch | N=C=S | Isothiocyanate | |
1911.28 | Bending | C-H | Aromatic compound | |
1599.40 | Stretch | N-O | Nitro compound | |
1389.56 | Bending | O-H | Phenol | |
1323.17 | Stretch | C-N | Aromatic amine | |
1070.81 | Stretch | S=O | sulfoxide | |
1039.08 | Stretch | S=O | sulfoxide | |
820.01 | Bending | C=C | Alkene | |
722.42 | Bending | C=C | Alkene | |
Fresh stem | 3269.77 | Stretch | O-H | Carboxylic acid |
2929.85 | Stretch | C-H | Alkane | |
2348.90 | Stretch | O=C=O | Carbon dioxide | |
2110.30 | Stretch | N=C=S | Isothiocyanate | |
2094.08 | Stretch | N=C=S | Isothiocyanate | |
1614.30 | Stretch | C=C | α,β-unsaturated ketone | |
1391.17 | Stretch | C-F | Fluoro compound | |
1330.95 | Bending | O-H | Phenol | |
1038.69 | Stretch | S=O | Sulfoxide | |
896.38 | Bending | C=C | Alkene | |
821.34 | Bending | C=C | Alkene | |
Powdered leaf | 3281.52 | Stretch | O-H | Alcohol |
3223.08 | Stretch | O-H | Carboxylic acid | |
2927.53 | Stretch | N-H | Amine salt | |
2328.14 | Stretch | O=C=O | Carbon dioxide | |
2115.65 | Stretch | N=C=S | Isothiocyanate | |
1888.35 | Bending | C-H | Aromatic compound | |
1592.68 | Bending | N-H | Amine | |
1394.61 | Stretch | C-F | Fluoro compound | |
1336.86 | Bending | O-H | Phenol | |
1036.22 | Stretch | C-N | Amine | |
808.04 | Stretch | C-Cl | Halo compound | |
767.36 | Stretch | C-Cl | Halo compound | |
Powdered stem | 3262.30 | Stretch | O-H | Alcohol |
2929.28 | Stretch | N-H | Amine salt | |
2344.39 | Stretch | O=C=O | Carbon dioxide | |
2116.90 | Stretch | N=C=S | Isothiocyanate | |
1607.25 | Bending | N-H | Amine | |
1391.95 | Stretch | C-F | Fluoro compound | |
1333.34 | Bending | O-H | Alcohol | |
1036.10 | Stretch | C-N | Amine | |
766.74 | Stretch | C-Cl | Halo compound |
Strain | Concentration (mg/mL) | Treatments/Synthesized AgNPs | Positive Control (mg/mL) | ||||||
---|---|---|---|---|---|---|---|---|---|
Leaf Methanol | Fresh Leaves | Powder Leaves | Stem Methanol | Fresh Stem | Powder Stem | L | S | ||
BS | 3.125 | R | R | R | R | R | R | 9.00 ± 1.00 | 11.00 ± 1.00 |
6.25 | R | R | R | R | R | R | |||
12.5 | 6.67 ± 0.58 | 7.33 ± 0.58 | 6.67 ± 0.58 | 6.67 ± 0.58 | 6.67 ± 1.15 | 7.00 ± 0.00 | |||
25 | 7.33 ± 0.58 | 8.00 ± 1.00 | 8.00 ± 1.00 | 7.67 ± 1.15 | 8.00 ± 1.73 | 9.00 ± 0.00 | |||
50 | 9.67 ± 2.08 | 9.67 ± 3.79 | 10.00 ± 1.73 | 9.00 ± 3.46 | 9.33 ± 2.31 | 11.33 ± 2.31 | |||
100 | 13.33 ± 3.06 | 14.33 ± 2.52 | 12.33 ± 1.53 | 15.00 ± 4.58 | 18.33 ± 3.21 | 17.33 ± 3.21 | |||
MRSA | 3.125 | R | R | R | R | R | R | 9.33 ± 0.58 | 9.00 ± 1.00 |
6.25 | 7.00 ± 1.73 | 6.67 ± 0.58 | R | 6.67 ± 0.58 | 6.67 ± 0.58 | 6.67 ± 0.58 | |||
12.5 | 9.33 ± 0.58 | 7.00 ± 0.00 | 6.00 ± 1.00 | 7.33 ± 1.15 | 7.67 ± 1.53 | 9.00 ± 1.00 | |||
25 | 10.67 ± 0.58 | 8.00 ± 1.00 | 7.33 ± 0.58 | 9.33 ± 1.15 | 9.67 ± 0.58 | 11.67 ± 1.53 | |||
50 | 12.67 ± 2.52 | 9.00 ± 1.00 | 10.00 ± 3.00 | 12.67 ± 2.52 | 12.00 ± 2.00 | 14.00 ± 4.00 | |||
100 | 14.67 ± 0.58 | 12.00 ± 2.65 | 11.00 ± 2.00 | 15.00 ± 1.00 | 14.00 ± 3.00 | 18.67 ± 3.21 | |||
SA | 3.125 | 7.33 ± 1.53 | 7.33 ± 0.58 | R | R | 6.67 ± 0.58 | R | 9.67 ± 0.58 | 10.00 ± 1.00 |
6.25 | 9.00 ± 2.65 | 8.00 ± 6.93 | R | R | 7.33 ± 1.15 | 7.33 ± 1.53 | |||
12.5 | 10.33 ± 0.58 | 9.33 ± 3.05 | 7.33 ± 2.08 | 7.67 ± 1.52 | 8.67 ± 1.53 | 8.67 ± 0.58 | |||
25 | 11.67 ± 2.08 | 10.33 ± 0.58 | 9.67 ± 1.15 | 9.33 ± 1.15 | 10.33 ± 0.58 | 9.33 ± 2.52 | |||
50 | 15.00 ± 1.00 | 12.00 ± 1.00 | 11.67 ± 3.79 | 12.33 ± 3.06 | 13.33 ± 2.31 | 13.67 ± 2.52 | |||
100 | 16.67 ± 2.52 | 14.00 ± 2.65 | 13.67 ± 2.52 | 15.00 ± 2.65 | 16.00 ± 2.65 | 16.33 ± 4.72 | |||
EC | 3.125 | 7.00 ± 1.00 | 7.33 ± 0.58 | 7.00 ± 0.00 | 7.00 ± 0.00 | 8.33 ± 0.58 | 7.67 ± 0.58 | 8.67 ± 0.58 | 9.33 ± 0.58 |
6.25 | 8.67 ± 0.58 | 9.33 ± 0.58 | 8.67 ± 0.58 | 9.33 ± 0.58 | 9.67 ± 0.58 | 9.33 ± 0.58 | |||
12.5 | 10.33 ± 0.58 | 11.33 ± 1.53 | 10.00 ± 0.00 | 10.33 ± 2.52 | 11.33 ± 0.58 | 10.67 ± 1.53 | |||
25 | 12.00 ± 2.65 | 13.67 ± 1.53 | 11.67 ± 0.58 | 12.33 ± 2.31 | 13.00 ± 2.65 | 12.33 ± 1.15 | |||
50 | 14.00 ± 2.65 | 14.00 ± 1.00 | 13.67 ± 4.16 | 14.00 ± 1.73 | 15.33 ± 0.58 | 14.00 ± 1.00 | |||
100 | 18.67 ± 3.51 | 15.67 ± 1.53 | 15.00 ± 1.00 | 16.67 ± 2.31 | 17.00 ± 3.00 | 19.33 ± 1.15 | |||
PA | 3.125 | 7.33 ± 1.53 | 7.00 ± 0.00 | R | R | 7.00 ± 0.00 | 7.00 ± 0.00 | 9.33 ± 0.58 | 8.67 ± 1.15 |
6.25 | 8.33 ± 1.53 | 7.67 ± 1.15 | 7.00 ± 0.00 | 7.33 ± 0.58 | 8.33 ± 0.58 | 7.67 ± 0.58 | |||
12.5 | 13.00 ± 2.65 | 10.33 ± 3.51 | 8.67 ± 1.53 | 8.00 ± 1.73 | 11.67 ± 2.89 | 9.67 ± 0.58 | |||
25 | 14.33 ± 3.05 | 12.33 ± 2.08 | 10.67 ± 3.79 | 11.67 ± 2.89 | 13.33 ± 2.89 | 11.00 ± 3.00 | |||
50 | 15.33 ± 1.53 | 13.67 ± 3.21 | 13.67 ± 3.52 | 13.67 ± 3.21 | 14.67 ± 0.58 | 15.33 ± 0.58 | |||
100 | 21.67 ± 2.87 | 17.00 ± 1.00 | 15.00 ± 4.00 | 19.67 ± 1.53 | 17.33 ± 3.79 | 18.67 ± 1.15 |
Cell Lines | Extracts | Cytotoxicity (µg/mL) | |
---|---|---|---|
Leaves | Stems | ||
HEK293 | Methanol | 9.02 | 61.66 |
Fresh | 47.86 | 33.04 | |
Powder | 100.00 | 61.24 | |
HeLa | Methanol | 5.87 | 12.58 |
Fresh | 29.64 | 32.14 | |
Powder | 69.18 | 54.70 | |
MCF-7 | Methanol | 16.11 | 27.23 |
Fresh | 47.86 | 41.30 | |
Powder | 74.13 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gangaram, S.; Naidoo, Y.; Dewir, Y.H.; Singh, M.; Lin, J.; Nicole Daniels, A.; Mendler-Drienyovszki, N. Biosynthesis of Silver Nanoparticles Using Barleria albostellata C.B. Clarke Leaves and Stems: Antibacterial and Cytotoxic Activity. Appl. Sci. 2024, 14, 8331. https://doi.org/10.3390/app14188331
Gangaram S, Naidoo Y, Dewir YH, Singh M, Lin J, Nicole Daniels A, Mendler-Drienyovszki N. Biosynthesis of Silver Nanoparticles Using Barleria albostellata C.B. Clarke Leaves and Stems: Antibacterial and Cytotoxic Activity. Applied Sciences. 2024; 14(18):8331. https://doi.org/10.3390/app14188331
Chicago/Turabian StyleGangaram, Serisha, Yougasphree Naidoo, Yaser Hassan Dewir, Moganavelli Singh, Johnson Lin, Aliscia Nicole Daniels, and Nóra Mendler-Drienyovszki. 2024. "Biosynthesis of Silver Nanoparticles Using Barleria albostellata C.B. Clarke Leaves and Stems: Antibacterial and Cytotoxic Activity" Applied Sciences 14, no. 18: 8331. https://doi.org/10.3390/app14188331
APA StyleGangaram, S., Naidoo, Y., Dewir, Y. H., Singh, M., Lin, J., Nicole Daniels, A., & Mendler-Drienyovszki, N. (2024). Biosynthesis of Silver Nanoparticles Using Barleria albostellata C.B. Clarke Leaves and Stems: Antibacterial and Cytotoxic Activity. Applied Sciences, 14(18), 8331. https://doi.org/10.3390/app14188331