A Novel Visual System for Conducting Safety Evaluations of Operational Tunnel Linings
Abstract
:1. Introduction
2. The Fuzzy–AHP Evaluation Model and Its Programming
2.1. Hierarchical Indexes and Classifications for Structure Safety Evaluations of Operational Tunnels
2.2. Programming of Fuzzy–AHP Model
2.2.1. Fuzzy Comprehensive Evaluation Programmatic Model
2.2.2. Determination of Index Weights
2.2.3. Determination of Membership Function
- (1)
- Partial-small type
- (2)
- Inter-mediate type
- (3)
- Partial-large type
3. Function Design and Implementation of Visualized System
4. Engineering Case Analysis
4.1. Project Overview
4.2. Source of Monitoring Data
4.3. Visualized Evaluation and Result Analysis
4.4. Verification of BP–RBF Combined Neural Network
4.4.1. Matlab Implementation of BP–RBF Neural Network Evaluation Model
4.4.2. Prediction of BP–RBF Combined Neural Network Model
4.5. Comparison of Visualized System and BP–RBF Combined Neural Network Evaluations
5. Conclusions
- The user-friendly interface of the visualized system simplified operations and integrated functions such as data input, management, analysis, and application. This system solved the problem of large amounts of monitoring data that were difficult to calculate and analyze, and promoted the development of structure safety evaluations from qualitative to quantitative results for operational tunnels.
- The system can conveniently edit and modify core calculation functions, such as membership functions, based on different practical engineering projects, which improves the applicability of the system. In addition, this system provides an important construction method for the programming and visualization of other kinds of evaluation models.
- Based on the monitoring data, the system was applied to the structure safety evaluation of a mountain tunnel during its operational period. The system provided the evaluation results of each section of the tunnel and key disease indexes to focus on, which was conducive to the sustainable operation of the tunnel.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Ma, M. Study of the characteristics of train-induced dynamic SIFs of tunnel lining cracks based on the modal superposition approach. Eng. Fract. Mech. 2020, 233, 107069. [Google Scholar] [CrossRef]
- Yin, S.; Li, Z.; Wang, E.; Niu, Y.; Tian, H.; Li, X.; Li, H.; Yang, C. The infrared thermal effect of coal failure with different impact types and its relationship with bursting liability. Infrared Phys. Technol. 2024, 138, 105263. [Google Scholar] [CrossRef]
- Nilimaa, J.; Hösthagen, A.; Emborg, M. Thermal crack risk of concrete structures: Evaluation of theoretical models for tunnels and bridges. Nord. Concr. Res. 2017, 56, 55–69. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64967 (accessed on 18 August 2024).
- Zhang, C.; Min, B.; Wang, H.; Zhang, S. Mechanical properties of the tunnel structures with cracks around voids behind linings. Thin-Walled Struct. 2022, 181, 110117. [Google Scholar] [CrossRef]
- Zheng, H.; Li, P.; Ma, G.; Zhang, Q. Experimental investigation of mechanical characteristics for linings of twins tunnels with asymmetric cross-section. Tunn. Undergr. Space Technol. 2022, 119, 104209. [Google Scholar] [CrossRef]
- Wang, X.; Fan, F.; Lai, J.; Xie, Y. Steel fiber reinforced concrete: A review of its material properties and usage in tunnel lining. Structures 2021, 34, 1080–1098. [Google Scholar] [CrossRef]
- Liu, W.; Wu, X.; Zhang, L.; Wang, Y.; Teng, J. Structural health-monitoring and assessment in tunnels: Hybrid simulation approach. J. Perform. Constr. Facil. 2020, 34, 04020045. [Google Scholar] [CrossRef]
- Liu, W.; Wu, X.; Zhang, L.; Wang, Y.; Teng, J. Sensitivity analysis of structural health risk in operational tunnels. Autom. Constr. 2018, 94, 135–153. [Google Scholar] [CrossRef]
- Zhang, J.; Kuang, M.; Zhang, Y.; Feng, T. Evaluation and analysis of the causes of a landslide and treatment measures during the excavation of a tunnel through a soil-rock interface. Eng. Fail. Anal. 2021, 130, 105784. [Google Scholar] [CrossRef]
- Chen, X.; Chen, L.; Ma, B.; Zhang, X.; Du, W.; Wang, X.; Yang, C. Mechanical-characteristic evaluation of excavation unloading rock mass subject to high-temperature conditions. Eng. Fail. Anal. 2021, 130, 105757. [Google Scholar] [CrossRef]
- Bai, C.; Xue, Y.; Qiu, D.; Yang, W.; Su, M.; Ma, X. Real-time updated risk assessment model for the large deformation of the soft rock tunnel. Int. J. Géoméch. 2021, 21, 04020234. [Google Scholar] [CrossRef]
- Wu, X.; Feng, Z.; Liu, Y.; Qin, Y.; Yang, T.; Duan, J. Enhanced safety prediction of vault settlement in urban tunnels using the pair-copula and Bayesian network. Appl. Soft Comput. 2023, 132, 109711. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, M.; Zhou, Z.; Li, L.; Shi, S.; Chen, Y.; Dai, W. A new quantitative method for risk assessment of water inrush in karst tunnels based on variable weight function and improved cloud model. Tunn. Undergr. Space Technol. 2019, 95, 103136. [Google Scholar] [CrossRef]
- Zhang, K.; Zheng, W.; Xu, C.; Chen, S. An improved extension system for assessing risk of water inrush in tunnels in carbonate karst terrain. KSCE J. Civ. Eng. 2019, 23, 2049–2064. [Google Scholar] [CrossRef]
- Song, T.; Zeng, J.; Ma, J.; Ma, C.; Li, T.; Xia, T. Water inrush risk assessment based on AHP and advance forecast approach: A case study in the micangshan tunnel. Adv. Civ. Eng. 2021, 2021, 9750447. [Google Scholar] [CrossRef]
- Fang, Q.; Wang, G.; Yu, F.; Du, J. Analytical algorithm for longitudinal deformation profile of a deep tunnel. J. Rock Mech. Geotech. Eng. 2021, 13, 845–854. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.; Li, G.; Qiu, D.; Gong, H.; Kong, F. An analytical model for assessing soft rock tunnel collapse risk and its engineering application. Geomech. Eng. 2020, 23, 441–454. [Google Scholar] [CrossRef]
- Li, S.; Liu, C.; Zhou, Z.; Li, L.; Shi, S.; Yuan, Y. Multi-sources information fusion analysis of water inrush disaster in tunnels based on improved theory of evidence. Tunn. Undergr. Space Technol. 2021, 113, 103948. [Google Scholar] [CrossRef]
- Song, Q.; Xue, Y.; Li, G.; Su, M.; Qiu, D.; Kong, F.; Zhou, B. Using bayesian network and intuitionistic fuzzy analytic hierarchy process to assess the risk of water inrush from fault in subsea tunnel. Geomech. Eng. 2021, 27, 605–614. [Google Scholar] [CrossRef]
- Chen, Z.; Li, T.; Xue, X.; Zhou, Y.; Jing, S. Fatigue reliability analysis and optimization of vibrator baseplate based on fuzzy comprehensive evaluation method. Eng. Fail. Anal. 2021, 127, 105357. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Lee, C.-H.; Wang, T.-T. Lining crack evolution of an operational tunnel influenced by slope instability. Tunn. Undergr. Space Technol. 2017, 65, 167–178. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, F.; Zhang, Q.; He, P.; Qin, Z. Geotechnical monitoring and analyses on the stability and health of a large cross-section railway tunnel constructed in a seismic area. Measurement 2018, 122, 620–629. [Google Scholar] [CrossRef]
- He, B.-G.; Li, H.-P.; Zhang, Z.-Q. The effect of earth pressure on the failure mode of high-speed railway tunnel linings. Eng. Fail. Anal. 2020, 110, 104398. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, Y.; Ye, Y. Three-dimensional effects of multiple voids behind lining on the mechanical behavior of tunnel structure. Ain Shams Eng. J. 2023, 14, 101949. [Google Scholar] [CrossRef]
- Li, Z.; Meng, X.; Liu, D.; Tang, Y.; Chen, T. Disaster Risk evaluation of superlong highways tunnel based on the cloud and AHP model. Adv. Civ. Eng. 2022, 2022, 8785030. [Google Scholar] [CrossRef]
- Jinlong, W.; Wenjie, P.; Yongjie, B.; Yuxing, Y.; Chen, C. VHCF evaluation with BP neural network for centrifugal impeller material affected by internal inclusion and GBF region. Eng. Fail. Anal. 2022, 136, 106193. [Google Scholar] [CrossRef]
- Cao, M.S.; Pan, L.X.; Gao, Y.F.; Novák, D.; Ding, Z.C.; Lehký, D.; Li, X.L. Neural network ensemble-based parameter sensitivity analysis in civil engineering systems. Neural Comput. Appl. 2017, 28, 1583–1590. [Google Scholar] [CrossRef]
- Long, X.; Zhao, S.; Jiang, C.; Li, W.; Liu, C. Deep learning-based planar crack damage evaluation using convolutional neural networks. Eng. Fract. Mech. 2021, 246, 107604. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Remeseiro, B. Feature selection in image analysis: A survey. Artif. Intell. Rev. 2020, 53, 2905–2931. [Google Scholar] [CrossRef]
- Kabir, H.; Garg, N. Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements. Sci. Rep. 2023, 13, 1497. [Google Scholar] [CrossRef]
Criterion Layer | Index Layer | Weight Values |
---|---|---|
Lining cracking A1 | Crack length and width A11 | 0.4109 |
Lining deformation A12 | 0.3781 | |
Lining peeling A13 | 0.2110 | |
Lining weakening A2 | Strength index A21 | 0.5622 |
Thickness index A22 | 0.4378 | |
Leakage water A3 | Leakage water state A31 | 1.0000 |
Lining cave A4 | Cave depth A41 | 1.0000 |
Structure Safety Level | Structure Safety Value |
---|---|
Slight damage (A) | |
Moderate damage (B) | |
Severe damage (C) | |
Dangerous state (D) |
Section | Crack Length /m | Crack Width/mm | Lining Deformation | Lining Peeling Depth /mm | Strength Index | Thickness Index | Water Leakage State | Lining Cave Depth /mm |
---|---|---|---|---|---|---|---|---|
1 | 2.3 | 0.4 | 0.00 | 8 | 0.90 | 0.70 | drip | 30 |
2 | 0.0 | 0.0 | 0.07 | 0 | 1.00 | 0.80 | seepage | 41 |
3 | 1.5 | 1.6 | 0.50 | 13 | 0.42 | 0.90 | drip | 37 |
4 | 4.5 | 0.6 | 0.80 | 20 | 0.38 | 0.50 | drip | 351 |
5 | 3.0 | 0.7 | 0.60 | 21 | 0.50 | 0.60 | drip | 589 |
6 | 4.0 | 1.1 | 0.70 | 12 | 0.40 | 0.50 | seepage | 121 |
7 | 1.8 | 0.4 | 0.01 | 6 | 0.90 | 0.51 | seepage | 31 |
8 | 2.3 | 1.2 | 0.02 | 5 | 0.80 | 0.43 | drip | 265 |
9 | 3.9 | 1.1 | 0.02 | 0.3 | 0.92 | 0.44 | drip | 65 |
10 | 0.2 | 0.3 | 0.06 | 0.5 | 0.70 | 0.52 | drip | 44 |
11 | 2.1 | 1.8 | 0.04 | 0.2 | 0.93 | 0.76 | drip | 143 |
12 | 0.3 | 0.2 | 0.05 | 9 | 0.80 | 0.82 | drip | 34 |
13 | 0.5 | 1.3 | 0.03 | 12 | 0.91 | 0.20 | drip | 31 |
14 | 4.2 | 1.8 | 0.12 | 11 | 0.61 | 0.73 | seepage | 189 |
15 | 1.8 | 1.3 | 0.30 | 13 | 0.87 | 0.78 | seepage | 35 |
16 | 1.1 | 2.1 | 0.07 | 16 | 0.45 | 0.83 | seepage | 409 |
17 | 0.2 | 0.1 | 0.65 | 8 | 0.60 | 0.81 | seepage | 210 |
18 | 0.3 | 0.2 | 0.76 | 12 | 0.63 | 0.52 | seepage | 25 |
19 | 1.2 | 0.1 | 0.21 | 14 | 0.47 | 0.72 | drip | 302 |
20 | 4.7 | 0.7 | 0.49 | 16 | 0.52 | 0.78 | drip | 34 |
21 | 2.2 | 0.5 | 0.38 | 10 | 0.50 | 0.49 | drip | 40 |
22 | 2.5 | 1.5 | 0.10 | 7 | 0.64 | 0.43 | drip | 54 |
23 | 3.4 | 1.4 | 0.04 | 9 | 0.97 | 0.65 | drip | 28 |
24 | 3.1 | 1.9 | 0.42 | 16 | 0.92 | 0.70 | drip | 245 |
25 | 2.6 | 2.0 | 0.30 | 13 | 0.82 | 0.53 | drip | 20 |
26 | 9.0 | 0.5 | 0.60 | 1 | 0.79 | 0.56 | gush | 54 |
27 | 5.4 | 0.5 | 0.03 | 16 | 0.80 | 0.49 | drip | 25 |
28 | 4.7 | 0.2 | 0.15 | 2 | 0.92 | 1.00 | drip | 93 |
29 | 0.1 | 0.2 | 0.01 | 1 | 0.91 | 0.62 | drip | 43 |
30 | 4.3 | 0.4 | 0.00 | 3 | 1.00 | 0.75 | drip | 32 |
Section Number | Evaluation of Lining Cracking | Evaluation of Lining Weakening | Evaluation of Water Leakage | Evaluation of Lining Cave | Overall Structure Safety Value | System Evaluation Results |
---|---|---|---|---|---|---|
1 | A | B | B | B | 3.4711 | B |
2 | A | A | A | B | 3.8307 | A |
3 | B | C | B | B | 2.8485 | B |
4 | C | D | B | C | 2.2418 | C |
5 | B | D | B | D | 2.4022 | C |
6 | B | D | A | C | 2.6805 | B |
7 | A | B | A | B | 3.6181 | A |
8 | A | C | B | C | 3.3241 | B |
9 | A | B | B | B | 3.5150 | A |
10 | A | C | B | B | 3.3193 | B |
11 | A | B | B | C | 3.5553 | A |
12 | A | B | B | B | 3.4494 | B |
13 | A | B | B | B | 3.3348 | B |
14 | A | D | A | C | 3.2526 | B |
15 | B | A | A | B | 3.3684 | B |
16 | A | C | A | C | 3.2036 | B |
17 | B | C | A | C | 2.8930 | B |
18 | B | D | A | B | 2.6392 | B |
19 | A | D | B | C | 2.9589 | B |
20 | B | C | B | B | 2.8213 | B |
21 | B | D | B | B | 2.8858 | B |
22 | A | D | B | B | 3.1257 | B |
23 | A | B | B | B | 3.4711 | B |
24 | B | B | B | C | 3.0424 | B |
25 | B | C | B | B | 2.9614 | B |
26 | B | C | D | B | 2.4260 | C |
27 | B | C | B | B | 2.9485 | B |
28 | A | A | B | B | 3.7214 | A |
29 | A | B | B | B | 3.5862 | A |
30 | A | B | B | B | 3.6294 | A |
Section Number | Crack Length | Crack Width | Lining Deformation | Lining Peeling Depth | Strength Index | Thickness Index | Water Leakage State | Lining Cave Depth |
---|---|---|---|---|---|---|---|---|
1 | 0.1613 | 0.1107 | 0.1000 | 0.3133 | 0.1240 | 0.1187 | 0.1533 | 0.9000 |
2 | 0.1000 | 0.1000 | 0.1014 | 0.1000 | 0.1195 | 0.1156 | 0.1195 | 0.9000 |
3 | 0.1236 | 0.1258 | 0.1017 | 0.3751 | 0.1000 | 0.1105 | 0.1346 | 0.9000 |
4 | 0.1094 | 0.1005 | 0.1010 | 0.1448 | 0.1000 | 0.1003 | 0.1037 | 0.9000 |
5 | 0.1034 | 0.1003 | 0.1001 | 0.1279 | 0.1000 | 0.1001 | 0.1020 | 0.9000 |
6 | 0.1239 | 0.1046 | 0.1020 | 0.1769 | 0.1000 | 0.1007 | 0.1040 | 0.9000 |
7 | 0.1462 | 0.1101 | 0.1000 | 0.2546 | 0.1230 | 0.1129 | 0.1256 | 0.9000 |
8 | 0.1069 | 0.1036 | 0.1000 | 0.1150 | 0.1024 | 0.1012 | 0.1060 | 0.9000 |
9 | 0.1478 | 0.1133 | 0.1000 | 0.1034 | 0.1111 | 0.1052 | 0.1244 | 0.9000 |
10 | 0.1025 | 0.1044 | 0.1000 | 0.1080 | 0.1117 | 0.1084 | 0.1353 | 0.9000 |
11 | 0.1115 | 0.1098 | 0.1000 | 0.1009 | 0.1050 | 0.1040 | 0.1110 | 0.9000 |
12 | 0.1059 | 0.1035 | 0.1000 | 0.3109 | 0.1177 | 0.1181 | 0.1459 | 0.9000 |
13 | 0.1121 | 0.2180 | 0.1000 | 0.4092 | 0.1302 | 0.1044 | 0.1509 | 0.9000 |
14 | 0.1173 | 0.1071 | 0.1000 | 0.1461 | 0.1021 | 0.1026 | 0.1037 | 0.9000 |
15 | 0.1346 | 0.1231 | 0.1000 | 0.3928 | 0.1131 | 0.1111 | 0.1161 | 0.9000 |
16 | 0.1020 | 0.1040 | 0.1000 | 0.1312 | 0.1007 | 0.1015 | 0.1018 | 0.9000 |
17 | 0.1004 | 0.1000 | 0.1021 | 0.1301 | 0.1019 | 0.1027 | 0.1034 | 0.9000 |
18 | 0.1032 | 0.1000 | 0.1181 | 0.4806 | 0.1139 | 0.1103 | 0.1258 | 0.9000 |
19 | 0.1029 | 0.1000 | 0.1003 | 0.1368 | 0.1010 | 0.1016 | 0.1050 | 0.9000 |
20 | 0.2005 | 0.1050 | 0.1000 | 0.4703 | 0.1007 | 0.1069 | 0.1360 | 0.9000 |
21 | 0.1367 | 0.1024 | 0.1000 | 0.2942 | 0.1024 | 0.1022 | 0.1327 | 0.9000 |
22 | 0.1356 | 0.1208 | 0.1000 | 0.2024 | 0.1080 | 0.1049 | 0.1282 | 0.9000 |
23 | 0.1961 | 0.1389 | 0.1000 | 0.3564 | 0.1266 | 0.1175 | 0.1561 | 0.9000 |
24 | 0.1088 | 0.1048 | 0.1000 | 0.1510 | 0.1016 | 0.1009 | 0.1052 | 0.9000 |
25 | 0.1934 | 0.1690 | 0.1000 | 0.6157 | 0.1211 | 0.1093 | 0.1690 | 0.9000 |
26 | 0.2271 | 0.1000 | 0.1015 | 0.1075 | 0.1043 | 0.1009 | 0.1523 | 0.9000 |
27 | 0.2720 | 0.1151 | 0.1000 | 0.6117 | 0.1247 | 0.1147 | 0.1631 | 0.9000 |
28 | 0.1392 | 0.1004 | 0.1000 | 0.1159 | 0.1066 | 0.1073 | 0.1159 | 0.9000 |
29 | 0.1017 | 0.1035 | 0.1000 | 0.1184 | 0.1167 | 0.1114 | 0.1370 | 0.9000 |
30 | 0.2075 | 0.1100 | 0.1000 | 0.1750 | 0.1250 | 0.1188 | 0.1500 | 0.9000 |
Section | Target Safety Level | Target Level Vector | Predict Output Vector | Predict Safety Level | Error |
---|---|---|---|---|---|
21 | B | 0 0 1 0 | 0.0179 0.0248 0.9854 −0.0279 | B | 0.0439 |
22 | B | 0 0 1 0 | 0.0066 0.0239 1.0215 0.0137 | B | 0.0356 |
23 | B | 0 0 1 0 | 0.0681 0.0319 0.8828 −0.0370 | B | 0.1441 |
24 | B | 0 0 1 0 | 0.0124 −0.0023 0.9961 0.1014 | B | 0.1023 |
25 | B | 0 0 1 0 | 0.1337 0.0416 0.0118 0.7696 | B | 0.2699 |
26 | C | 0 1 0 0 | 0.0273 0.0264 −0.0248 0.9675 | C | 0.0558 |
27 | B | 0 0 1 0 | 0.0033 0.0216 0.0030 1.0242 | B | 0.0327 |
28 | A | 0 0 0 1 | 0.0070 0.0172 −0.0104 1.0103 | A | 0.0302 |
29 | A | 0 0 0 1 | 0.0035 0.0217 0.0721 0.9237 | A | 0.1073 |
30 | A | 0 0 0 1 | 0.0806 0.0505 0.0049 0.8668 | A | 0.1637 |
Sections | Visualized System | BP–RBF Combined Neural Network |
---|---|---|
21 | B | B |
22 | B | B |
23 | B | B |
24 | B | B |
25 | B | B |
26 | C | C |
27 | B | B |
28 | A | A |
29 | A | A |
30 | A | A |
Validation/epoch | 0.0099342/4 | |
training epochs | 9 | |
Average error | 0.0986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Yang, S.; Guo, H.; Han, L.; Su, S.; Shan, H.; Zhao, J.; Wang, G. A Novel Visual System for Conducting Safety Evaluations of Operational Tunnel Linings. Appl. Sci. 2024, 14, 8414. https://doi.org/10.3390/app14188414
Jin Y, Yang S, Guo H, Han L, Su S, Shan H, Zhao J, Wang G. A Novel Visual System for Conducting Safety Evaluations of Operational Tunnel Linings. Applied Sciences. 2024; 14(18):8414. https://doi.org/10.3390/app14188414
Chicago/Turabian StyleJin, Yuhao, Shuo Yang, Hui Guo, Lijun Han, Shanjie Su, Hao Shan, Jie Zhao, and Guixuan Wang. 2024. "A Novel Visual System for Conducting Safety Evaluations of Operational Tunnel Linings" Applied Sciences 14, no. 18: 8414. https://doi.org/10.3390/app14188414
APA StyleJin, Y., Yang, S., Guo, H., Han, L., Su, S., Shan, H., Zhao, J., & Wang, G. (2024). A Novel Visual System for Conducting Safety Evaluations of Operational Tunnel Linings. Applied Sciences, 14(18), 8414. https://doi.org/10.3390/app14188414