Flash Floods Hazard to the Settlement Network versus Land Use Planning (Lublin Upland, East Poland)
Abstract
:Featured Application
Abstract
1. Introduction
2. Study Area
3. Methods
3.1. Data Sources
3.2. GIS Analysis
- (a)
- Proportion of arable land—a greater proportion of arable land increases the susceptibility to flash floods: faster and more intense formation of surface runoff; crops tend to have sparse vegetation, due to which they do not retain water.
- (b)
- Proportion of forest—a greater proportion of forests reduces susceptibility due to less intense surface runoff.
- (c)
- Catchment area—a smaller catchment area increases susceptibility: flash floods form locally in small catchments.
- (d)
- Share of geomorphons—specific types of geomorphons promote the formation of surface runoff and its concentration. These were classified on the basis of their location in topography to identify those associated with land depressions and concentrated runoff.
- (e)
- Slope of valley sides—steeper slopes and higher gradients increase susceptibility due to more surface runoff and water delivery to valley bottoms.
- (f)
- Catchment shape—the more circular the catchment area, the higher the susceptibility because water inflow to the valley floor is more spread out over time.
- (g)
- Slope of valley bottom—a more sloped valley bottom increases the susceptibility due to faster surface runoff.
- (h)
- Road density—higher road density increases the susceptibility because impermeable roads are places where surface runoff rapidly forms.
- (i)
- Local relief—higher relative heights increase susceptibility to faster surface runoff.
3.3. Spatial Plannning and Flash Flood Threat
4. Results
4.1. Spatial Diversity of Catchment Susceptibility
4.2. Flash Flood Hazard in Local Land Use Planning
- For urbanized areas and within the development areas of various functions—the principles for the formation of a proper functional and spatial structure, guidelines for technical and road infrastructure networks, the permissible minimum proportion of biologically active areas, the principles of discharge of rainwater into the ground, the maintenance of tree plantings, the principles of distribution, and the technical parameters of buildings;
- For agricultural areas—maintenance of an appropriate share of green areas, especially in watershed zones and areas prone to soil erosion (forests, permanent grassland, wasteland), the creation of buffer zones (wooded and shrubby) on agricultural land, the maintenance of midfield and roadside hedges, the introduction of phytomelioration, the maintenance of naturally valuable enclaves, the development of small retention of water, and the prohibition of development.
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gaume, E.; Borga, M. Post-flood field investigations in upland catchments after major flash floods: Proposal of a methodology and illustrations. J. Flood Risk Manag. 2008, 1, 175–189. [Google Scholar] [CrossRef]
- Borga, M.; Anagnostou, E.N.; Blöschl, G.; Creutin, J.D. Flash flood forecasting, warning and risk management: The HYDRATE project. Environ. Sci. Policy 2011, 14, 834–844. [Google Scholar] [CrossRef]
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaškovičova, L.; Blöschl, G.; Borga, M.; Dumitrescu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterization of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 2010, 394, 118–133. [Google Scholar] [CrossRef]
- Lumbroso, D.; Gaume, E. Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J. Hydrol. 2012, 414–415, 16–30. [Google Scholar] [CrossRef]
- Gourley, J.J.; Hong, Y.; Flamig, Z.L.; Arthur, A.; Clark, R.; Calianno, M.; Ruin, I.; Ortel, T.; Wieczorek, M.E.; Kirstetter, P.-E.; et al. A unified flash flood database across the United States. Bull. Am. Meteorol. Soc. 2013, 94, 799–805. [Google Scholar] [CrossRef]
- Ma, M.; He, B.; Wan, J.; Jia, P.; Guo, X.; Gao, L.; Maguire, L.W.; Hong, Y. Characterizing the Flash Flooding Risks from 2011 to 2016 over China. Water 2018, 10, 704. [Google Scholar] [CrossRef]
- Bryndal, T. Powodzie błyskawiczne w małych zlewniach karpackich—Wybrane aspekty zarządzania ryzykiem powodziowym. Ann. Univ. Paedagog. Cracoviensis Stud. Geogr. 2014, 170, 69–80. [Google Scholar]
- Pociask-Karteczka, J.; Żychowski, J.; Bryndal, T. Zagrożenia związane z wodą—Powodzie błyskawiczne. Gospod. Wodna 2017, 2, 37–42. [Google Scholar]
- Bryndal, T. Local flash floods in Central Europe: A case study of Poland. Nor. Geogr. Tidsskr.–Nor. J. Geogr. 2015, 69, 288–298. [Google Scholar] [CrossRef]
- Mertz, R.; Blöschl, G. A process typology of regional floods. Water Resour. Res. 2003, 39, 1340. [Google Scholar]
- Starkel, L. Heavy rains and floods in Europe during last millenium. Pr. Geogr. 2000, 107, 55–62. [Google Scholar]
- Michalczyk, Z.; Janicki, G.; Rodzik, J.; Siwek, K. Hydrogeomorfologiczne skutki intensywnych opadów na międzyrzeczu Bystrzycy i Giełczwi (Wyżyna Lubelska). Przegląd Naukowy. Inżynieria Kształtowanie Sr. 2008, 17, 30–41. [Google Scholar]
- Rodzik, J.; Janicki, G.; Zagórski, P.; Zgłobicki, W. Deszcze nawalne na Wyżynie Lubelskiej i ich wpływ na rzeźbę obszarów lessowych. Dok. Geogr. 1998, 11, 45–68. [Google Scholar]
- Janicki, G.; Kociuba, W.; Rodzik, J.; Zgłobicki, W. Ekstremalne procesy geomorfologiczne we wschodniej części Wyżyn Polskich—Warunki występowania i oddziaływanie na rzeźbę. Pr. Stud. Geogr. 2010, 45, 11–28. [Google Scholar]
- Janicki, G.; Rodzik, J.; Chabudziński, Ł.; Franczak, Ł.; Siłuch, M.; Stępniewski, K.; Dyer, J.L.; Kołodziej, G.; Maciejewska, E. Monitoring of fluvial transport in small upland catchments-methods and preliminary results. Ann. UMCS Sec. B 2014, 69, 49–60. [Google Scholar] [CrossRef]
- Rodzik, J.; Janicki, G. Local downpours and their erosion effects. Global Chang. 2003, 10, 49–66. [Google Scholar]
- Janicki, G. System stoku zmywowego i jego modelowanie statystyczne—Na przykładzie Wyżyn Lubelsko-Wołyńskich; MCS University Press: Lublin, Poland, 2016. [Google Scholar]
- Siwek, K. Zróżnicowanie opadów atmosferycznych na Lubelszczyźnie w latach 1951–2000. Ph.D. Thesis, UMCS, Lublin, Poland, 2006. [Google Scholar]
- Ziemnicki, S. Skutki deszczu nawalnego we wsi Piaski Szlacheckie pod Krasnymstawem. Gospod. Wodna 1956, 11, 476–480. [Google Scholar]
- Gil, E. Spływ wody i procesy geomorfologiczne w zlewniach fliszowych podczas gwałtownej ulewy w Szymbarku w dniu 7 czerwca 1985 roku. Dok. Geogr. 1998, 11, 85–107. [Google Scholar]
- Bryndal, T.; Cabaj, W.; Ciupa, T. Gwałtowne wezbrania małych cieków w Niecce Nidziańskiej. Przegląd Geogr. 2008, 80, 127–146. [Google Scholar]
- Suligowski, R. The spatial distribution of probable maximum precipitation (PMP) over the Kielce Upland in one day and multi-day intervals. Meteorol. Hydrol. Water Manag. Res. Oper. Appl. 2013, 1, 39–44. [Google Scholar] [CrossRef]
- Bajabaa, S.; Masoud, M.; Al-Amri, N. Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arab. J. Geosci. 2014, 7, 2469–2481. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Sharifi, E.; Linh, N.T.T.; Abba, S.; Vojtek, M.; Vojteková, J.; Nhi, P.T.T.; Khoi, D.N. Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sens. 2020, 12, 106. [Google Scholar] [CrossRef]
- Xiong, J.; Li, J.; Wang, W.; Guo, L. A GIS-Based Support Vector Machine Model for Flash Flood Vulnerability Assessment and Mapping in China. ISPRS Int. J. Geo-Inf. 2019, 8, 297. [Google Scholar] [CrossRef]
- Abdelkareem, M. Targeting flash flood potential areas using remotely sensed data and GIS techniques. Nat. Hazards 2017, 85, 19–37. [Google Scholar] [CrossRef]
- Costache, R.; Zaharia, L. Flash-flood potential assessment and mapping by integrating the weights-of-evidence and frequency ratio statistical methods in GIS environment—Case study: Bâsca Chiojdului River catchment (Romania). J. Earth Syst. Sci. 2017, 126, 59. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y. GIS-based dynamic modelling and analysis of flash floods considering land-use planning. Int. J. Geogr. Inf. Sci. 2017, 31, 481–498. [Google Scholar] [CrossRef]
- Pham, B.T.; Avand, M.; Janizadeh, S.; Phong, T.V.; Al-Ansari, N.; Ho, L.S.; Das, S.; Le, H.V.; Amini, A.; Bozchaloei, S.K.; et al. GIS Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment. Water 2020, 12, 683. [Google Scholar] [CrossRef]
- Bui, D.T.; Tsangaratos, P.; Ngo, P.T.; Pham, T.D.; Pham, B.T. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Sci. Total Environ. 2019, 668, 1038–1054. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Tien Bui, D. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef]
- Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ Monit Assess 2016, 188, 656. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Sefry, S.A. Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ. Earth Sci. 2016, 75, 12. [Google Scholar] [CrossRef]
- Saleh, A. Flash Flood Susceptibility Modelling: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 712, 012005. [Google Scholar] [CrossRef]
- Díez-Herrero, A.; Garrote, J. Flood Risk Assessments: Applications and Uncertainties. Water 2020, 12, 2096. [Google Scholar] [CrossRef]
- Cheng, Z.; Georgakakos, K.P.; Spencer, C.R.; Banks, R. Numerical Modeling of Flash Flood Risk Mitigation and Operational Warning in Urban Areas. Water 2022, 14, 2494. [Google Scholar] [CrossRef]
- Hamilton, K.; Smith, S.R.; Wright, C.; Buchhorn, Y.M.; Peden, A.E. Predicting and Changing Intentions to Avoid Driving into Urban Flash Flooding. Water 2022, 14, 3477. [Google Scholar] [CrossRef]
- Franczak, P.; Listwan-Franczak, K.; Działek, J.; Biernacki, W. Planowanie przestrzenne na obszarach zalewowych w zlewniach górskich różnego rzędu w dorzeczu górnej Wisły oraz górnej i środkowej Odry. Pr. Stud. Geogr. 2016, 61, 25–45. [Google Scholar]
- Neuvel, J.M.M. Geographical Dimensions of Risk Management. The Contribution of Spatial Planning and Geo-ICT to Risk Reduction. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2009. [Google Scholar]
- Ran, J.; Nedovic-Budic, Z. Integrating spatial planning and flood risk management: A new conceptual framework for the spatially integrated policy infrastructure. Comput. Environ. Urban Syst. 2016, 57, 68–79. [Google Scholar] [CrossRef]
- Gralepois, M. What Can We Learn from Planning Instruments in Flood Prevention? Comparative Illustration to Highlight the Challenges of Governance in Europe. Water 2020, 12, 1841. [Google Scholar] [CrossRef]
- Christensen, J.H.; Christensen, O.B. Climate modelling: Severe summertime flooding in Europe. Nature 2003, 421, 805–806. [Google Scholar] [CrossRef]
- Wilson, E. Adapting to Climate Change at the Local Level: The Spatial Planning Response. Local Environ. 2006, 11, 609–625. [Google Scholar] [CrossRef]
- Onur, A.Z.; Tezer, A. 2015. Ecosystem services based spatial planning decision making for adaptation to climate changes. Habitat Int. 2015, 47, 267–278. [Google Scholar] [CrossRef]
- Powodzie błyskawiczne—Coraz Częstsze Zmartwienie Samorządów. Available online: https://wodnesprawy.pl/powodzie-blyskawiczne-coraz-czestsze-zmartwienie-sa (accessed on 18 May 2024).
- Powodzie Błyskawiczne Coraz Częstsze Zjawisko w Polskich Miastach. Available online: https://piu.org.pl/blogpiu/powodzie-blyskawiczne-coraz-czestsze-zjawisko-w-polskich-miastach (accessed on 18 May 2024).
- Bryndal, T. Identyfikacja małych zlewni podatnych na formowanie gwałtownych wezbrań (na przykładzie Pogórza Dynowskiego, Strzyżowskiego i Przemyskiego. Przegląd Geogr. 2011, 83, 27–49. [Google Scholar] [CrossRef]
- Baran-Zgłobicka, B.; Godziszewska, D.; Zgłobicki, W. The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland). Resources 2021, 10, 14. [Google Scholar] [CrossRef]
- Uziak, S.; Turski, R. (Eds.) Środowisko przyrodnicze Lubelszczyzny; Lubelskie Towarzystwo Naukowe: Lublin, Poland, 2009. [Google Scholar]
- Baran-Zgłobicka, B.; Zgłobicki, W. Mosaic landscapes of SE Poland: Should we preserve them? Agrofor. Syst. 2012, 85, 351–365. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Karczmarczuk, K.; Baran-Zgłobicka, B. Intensity and Driving Forces of Land Abandonment in Eastern Poland. Appl. Sci. 2020, 10, 3500. [Google Scholar] [CrossRef]
- Bank Danych Lokalnych. Available online: https://bdl.stat.gov.pl/bdl/start (accessed on 23 May 2024).
- Geoportal Infrastruktury Informacji Przestrzennej (w Polsce). Główny Urząd Geodezji i Kartografii. Available online: https://www.geoportal.gov.pl/ (accessed on 5 February 2024).
- Woźniak, P. High Resolution Elevation Data in Poland. In Geomorphometry for Geosciences; Adam Mickiewicz Uniwersity: Poznań, Poland, 2015; pp. 13–14. [Google Scholar]
- Chrobak, T.; Łabaj, A.; Bolibok, A. (Eds.) Baza danych obiektów topograficznych. Podręcznik dla uczestników szkolenia z możliwości, form i metod zastosowania bazy danych obiektów topograficznych; GUGiK: Warszawa, Poland, 2014. [Google Scholar]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A Pattern Recognition Approach to Classification and Mapping of Landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Regionalna Infrastruktura Informacji Przestrzennej Województwa Lubelskiego. Available online: https://gis.lubelskie.pl/bezplatne-dane/ (accessed on 30 May 2024).
- Ostrowski, J.; Czarnecka, H.; Glowacka, B.; Krupa-Marchlewska, J.; Zaniewska, M.; Sasim, M.; Moskwicki, T.; Dobrowolski, A. Nagłe powodzie lokalne (flash flood) w Polsce i skala ich zagrożeń. In Wpływ Zmian Klimatu na Środowisko, Gospodarkę i Społeczeństwo. Tom 3, Klęski Żywiołowe a Bezpieczeństwo Wewnętrzne Kraju; Lorenc, H., Ed.; Wydawnictwo IMGW-PIB: Warszawa, Poland, 2012; pp. 123–149. [Google Scholar]
- Weingartner, R.; Barben, M.; Spreafico, M. Floods in mountain areas—An overview based on examples from Switzerland. J. Hydrol. 2003, 282, 10–24. [Google Scholar] [CrossRef]
- Dyrektywa 2007/60/WE Parlamentu Europejskiego i Rady z dnia 23 Października 2007 r. w Sprawie Oceny Ryzyka Powodziowego i Zarządzania nim. Dziennik Urzędowy Unii Europejskiej, L. 228 z 06.11.2007 r. Available online: https://sip.lex.pl/akty-prawne/dzienniki-UE/dyrektywa-2007-60-we-w-sprawie-oceny-ryzyka-powodziowego-i-zarzadzania-nim-67719456 (accessed on 5 February 2024).
- Ustawa z dnia 20 lipca 2017 r. Prawo wodne. Dziennik Ustaw 2017 poz. 1566 z późn. zm. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001566 (accessed on 5 February 2024).
- Ustawa z dnia 27 Marca 2003 r. o Planowaniu i Zagospodarowaniu Przestrzennym. Dziennik Ustaw 2004 nr 80 poz. 714 z późn. zm. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20030800717 (accessed on 5 February 2024).
- Ustawa z Dnia 3 Lutego 1995 r. o Ochronie Gruntów Rolnych i Leśnych. Dziennik Ustaw 1995 nr 16 poz. 78 z późn. zm. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu19950160078 (accessed on 5 February 2024).
- Ustawa z Dnia 7 Lipca 2023 r. o Zmianie Ustawy o Planowaniu i Zagospodarowaniu Przestrzennym Oraz Niektórych Innych Ustaw. Dziennik Ustaw 2023 poz. 1688. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20230001688 (accessed on 5 February 2024).
- Nowak, M.J. Decyzje o Warunkach Zabudowy i Zagospodarowania Terenu w Gospodarowaniu i Zarządzaniu Przestrzenią; CeDeWu: Warszawa, Poland, 2012. [Google Scholar]
- Ustawa z Dnia 27 Kwietnia 2001 r. Prawo ochrony Środowiska. Dziennik Ustaw 2001 nr 62 poz. 627 z późn. zm. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20010620627 (accessed on 5 February 2024).
- Studium Uwarunkowań i Kierunków Zagospodarowania Miasta i Gminy Krasnobród. Załącznik do uchwały Rada Miasta. 2017. Available online: http://archiwum.krasnobrod.pl/dat/attach/2017-05/19048_studium-kierunki-krasnobrod_wylozenie.pdf (accessed on 5 February 2024).
- Kundzewicz, Z.W.; Hegger, D.L.T.; Matczak, P.; Driessen, P.P.J. Flood-risk reduction: Structural measures and diverse strategies [Opinion]. Proc. Natl. Acad. Sci. USA 2018, 115, 12321–12325. [Google Scholar] [CrossRef] [PubMed]
- Driessen, P.P.J.; Hegger, D.L.T.; Kundzewicz, Z.W.; Van Rijswick, H.F.M.W.; Crabbé, A.; Larrue, C.; Matczak, P.; Pettersson, M.; Priest, S.; Suykens, C.; et al. Governance Strategies for Improving Flood Resilience in the Face of Climate Change. Water 2018, 10, 1595. [Google Scholar] [CrossRef]
- Tullos, D. Opinion: How to achieve better flood-risk governance in the United States. Proc. Natl. Acad. Sci. USA 2018, 115, 3731–3734. [Google Scholar] [CrossRef] [PubMed]
- Sapountzaki, K.; Wanczura, S.; Casertano, G.; Greiving, S.; Xanthopoulos, G.; Ferrara, F.F. Disconnected policies and actors and the missing role of spatial planning throughout the risk management cycle. Nat. Hazards 2011, 59, 1445–1474. [Google Scholar] [CrossRef]
- Raikes, J.; Smith, T.F.; Jacobson, C.; Baldwin, C. Pre-disaster planning and preparedness for floods and droughts: A systematic review. Int. J. Disaster Risk Reduct. 2019, 38, 101207. [Google Scholar] [CrossRef]
- Rouillard, J.J.; Reeves, A.D.; Heal, K.V.; Ball, T. The role of public participation in encouraging changes in rural land use to reduce flood risk. Land Use Policy 2014, 38, 637–645. [Google Scholar] [CrossRef]
- Neuvel, J.M.M.; Van Den Brink, A. Flood risk management in Dutch local spatial planning practices. J. Environ. Plan. Manag. 2009, 52, 865–880. [Google Scholar] [CrossRef]
- Franczak, P.; Listwan, K. Ryzyko powodziowe w małych zlewniach górskich a sposoby zagospodarowania obszarów zalewowych zapisane w aktach planistycznych. Studium przypadku Makowa Podhalańskiego i Kasinki Małej. In Współczesne problemy i kierunki badawcze w geografii tom 3; Liro, J., Liro, M., Krąż, P., Eds.; Instytut Geografii i Gospodarki Przestrzennej UJ: Kraków, Poland, 2015; pp. 45–61. [Google Scholar]
- Meng, M.; Dabrowski, M.; Stead, D. Enhancing Flood Resilience and Climate Adaptation: The State of the Art and New Directions for Spatial Planning. Sustainability 2020, 12, 7864. [Google Scholar] [CrossRef]
- Tate, E.; Rahman, A.; Emrich, C.T.; Sampson, C.C. Flood exposure and social vulnerability in the United States. Nat. Hazards 2021, 106, 435–457. [Google Scholar] [CrossRef]
- Fox, S.; Agyemang, F.; Hawker, L.; Neal, J. Integrating social vulnerability into high-resolution global flood risk mapping. Nat. Commun. 2024, 15, 3155. [Google Scholar] [CrossRef]
- Chaladdee, A.; Kim, S.M.; Nitivattananon, V.; Pal, I.; Roy, J.; Roachanakanan, T. Trend Analysis of Mainstreaming Flood Risk Reduction into Spatial Planning in Thailand. Sustainability 2022, 14, 1119. [Google Scholar] [CrossRef]
- Kocsis, I.; Bilașco, Ș.; Irimuș, I.-A.; Dohotar, V.; Rusu, R.; Roșca, S. Flash Flood Vulnerability Mapping Based on FFPI Using GIS Spatial Analysis Case Study: Valea Rea Catchment Area, Romania. Sensors 2022, 22, 3573. [Google Scholar] [CrossRef]
- Lazarević, K.; Todosijević, M.; Vulević, T.; Polovina, S.; Momirović, N.; Caković, M. Determination of Flash Flood Hazard Areas in the Likodra Watershed. Water 2023, 15, 2698. [Google Scholar] [CrossRef]
- Chakraborty, L.; Thistlethwaite, J.; Minano, A.; Henstra, D.; Scott, D. Leveraging Hazard, Exposure, and Social Vulnerability Data to Assess Flood Risk to Indigenous Communities in Canada. Int. J. Disaster Risk Sci. 2021, 12, 821–838. [Google Scholar] [CrossRef]
- Kocur-Bera, K. Kształtowanie bezpiecznej przestrzeni obszarów wiejskich w aspekcie występowania ekstremalnych zjawisk pogodowych; Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego: Olsztyn, Poland, 2016. [Google Scholar]
- Bach, P.M.; Kuller, M.; McCarthy, D.T.; Deletic, A. A spatial planning-support system for generating decentralised urban stormwater management schemes. Sci. Total. Environ. 2020, 726, 138282. [Google Scholar] [CrossRef] [PubMed]
- Simperler, L.; Himmelbauer, P.; Ertl, T.; Stoeglehner, G. Prioritization of stormwater management sites in urban areas. J. Environ. Manag. 2020, 265, 110507. [Google Scholar] [CrossRef]
- Gandini, A.; Garmendia, L.; Prieto, I.; Álvarez, I.; San-José, J.-T. A holistic and multi-stakeholder methodology for vulnerability assessment of cities to flooding and extreme precipitation events. Sustain. Cities Soc. 2020, 63, 102437. [Google Scholar] [CrossRef]
- Palacio-Aponte, A.G.; Ortíz-Rodríguez, A.J.; Sandoval-Solis, S. Methodological framework for territorial planning of urban areas: Analysis of socio-economic vulnerability and risk associated with flash flood hazards. Appl. Geogr. 2022, 149, 102809. [Google Scholar] [CrossRef]
Indicator | Dzierzkowice | Głusk | Krasnobród | Poniatowa | Szczebrzeszyn | Trzydnik Duży | Urzędów | Wólka | Zakrzew | Zamość |
---|---|---|---|---|---|---|---|---|---|---|
Area of municipality (km2) | 87 | 64 | 127 | 85 | 123 | 104 | 119 | 73 | 75 | 196 |
Population density (residents/km2) | 59.8 | 225.2 | 53.2 | 157.2 | 86 | 57.9 | 69.3 | 195.6 | 35.4 | 121.2 |
Number of localities (of which cities) | 15 | 18 | 17 (1) | 18 (1) | 15 (1) | 22 | 30 (1) | 16 | 18 | 35 |
Forests (%) | 24.6 | 7.8 | 53.8 | 17.8 | 23.1 | 7.4 | 16.4 | 11.7 | 13.2 | 9.2 |
Agricultural lands (%) | 51.4 | 66.5 | 30.6 | 67.6 | 48.8 | 84.2 | 70.4 | 48.9 | 64.6 | 72.1 |
Developed lands (ha) | 149 | 327 | 466 | 334 | 826 | 236 | 31.8 | 321 | 140 | 1159 |
Developed lands (%) | 1.7 | 5.1 | 3.7 | 4.0 | 6.7 | 2.3 | 2.7 | 4.4 | 1.9 | 5.9 |
Bedrock | Limestones, sandstones | Marls | Limestones, sandstones | Marls | Limestones, marls | Limestones, sandstones | Limestones, sandstones | Opokas, loess | Sandstones | Marls |
Land relief | Diversified | Flat plain | Diversified | Flat depression | Dvesrified, depression | Diversified | Diversified | Diversified | Plateau | Depression |
Area (km2) | Pts | Share of Arable Land (%) | Pts | Share of Forest (%) | Pts | Geomorphons * | Pts | Mean Slope (°) | Pts |
0.0–0.25 | 5 | 0–20 | 2 | 0–10 | 5 | Ridge, flat | 2 | <2.0 | 2 |
0.26–0.50 | 4 | 21–40 | 4 | 11–20 | 4 | Spur, shoulder | 4 | 2.1–4.0 | 4 |
0.51–0.75 | 3 | 41–60 | 6 | 21–30 | 3 | Slope, footslope | 6 | 4.1–6.0 | 6 |
0.76–1.00 | 2 | 61–80 | 8 | 31–40 | 2 | Hollow | 8 | 6.1–8.0 | 8 |
1.01–10.0 | 1 | 81–100 | 10 | 41–50 | 1 | Valley, depression | 10 | >8.0 | 10 |
Local Relief (m) | Pts | Circularity | Pts | Drainage Slope (°) | Pts | Roads Density (km/km2) | Pts | ||
1.05–15 | 1 | >0.4 | 1 | <2.0 | 1 | 0–2.5 | 1 | ||
15–30 | 2 | 0.3–0.4 | 2 | 2.0–4.0 | 2 | 2.6–5.0 | 2 | ||
30–45 | 3 | 0.2–0.3 | 3 | 4.0–6.0 | 3 | 5.1–7.5 | 3 | ||
45–60 | 4 | 0.1–0.2 | 4 | 6.0–8.0 | 4 | 7.6–10.0 | 4 | ||
>60 | 5 | <0.1 | 5 | >8.0 | 5 | >10.0 | 5 |
Points | Category | Susceptibility |
---|---|---|
22–28 | 1 | Very low |
29–35 | 2 | Low |
36–42 | 3 | Moderate |
43–49 | 4 | High |
50–56 | 5 | Very high |
Municipality | Number of Buildings in the Municipality | Share of Buildings Located on Potential Flowlines [%] |
---|---|---|
Dzierzkowice | 652 | 13.0 |
Głusk | 1444 | 18.5 |
Krasnobród | 1024 | 15.6 |
Poniatowa | 922 | 14.5 |
Szczebrzeszyn | 1981 | 21.7 |
Trzydnik Duży | 677 | 10.5 |
Urzędów | 1022 | 13.6 |
Wolka | 838 | 12.4 |
Zakrzew | 796 | 20.5 |
Zamość | 2668 | 9.8 |
Commune | Value | Arable Land (%) | Forests (%) | Area (km2) | Mean Slope (°) | Local Relief m | Circularity | Drainage Slope (°) | Road Density (km/km2) |
---|---|---|---|---|---|---|---|---|---|
Dzierzkowice | Mean | 52.7 | 3.2 | 0.1 | 4.2 | 31.4 | 0.1 | 3.8 | 5.9 |
Min | 0 | 0 | 0.1 | 1.7 | 1.7 | 0.1 | 1.7 | 0 | |
Max | 99.9 | 49.4 | 3.3 | 17.2 | 78 | 0.3 | 16.6 | 46.6 | |
Głusk | Mean | 68 | 1.1 | 0.1 | 2.2 | 14.3 | 0.1 | 2.1 | 5.9 |
Min | 0 | 0 | 0.1 | 1.1 | 1.8 | 0 | 0.5 | 0 | |
Max | 100 | 45.5 | 4.2 | 3.8 | 38.5 | 0.4 | 7.2 | 36.2 | |
Krasnobród | Mean | 53.6 | 10.8 | 0.1 | 4.9 | 34.9 | 0.1 | 3.5 | 6.6 |
Min | 0 | 0 | 0.1 | 1.7 | 2 | 0.1 | 0.6 | 0 | |
Max | 100 | 49.1 | 2.4 | 12 | 78.4 | 0.4 | 14.1 | 34 | |
Poniatowa | Mean | 59 | 2.9 | 0.1 | 2.1 | 12.3 | 0.1 | 2.1 | 5.2 |
Min | 0 | 0 | 0.1 | 1.3 | 1.7 | 0 | 0.5 | 0 | |
Max | 99.9 | 49.9 | 8.9 | 4.2 | 48.9 | 0.3 | 11.3 | 40.5 | |
Szczebrzeszyn | Mean | 68 | 5.2 | 0.1 | 4.4 | 29.2 | 0.1 | 3.5 | 5 |
Min | 0 | 0 | 0.1 | 1.4 | 1 | 0 | 0.8 | 0 | |
Max | 100 | 49 | 3 | 16.4 | 104.4 | 0.4 | 18.9 | 26.3 | |
Trzydnik Duży | Mean | 82.4 | 1.2 | 0.1 | 3.3 | 23.9 | 0.1 | 3.2 | 5.4 |
Min | 0 | 0 | 0.1 | 1.4 | 1.8 | 0 | 0.8 | 0 | |
Max | 100 | 46.8 | 6.9 | 10.6 | 55.1 | 0.4 | 11.6 | 42.7 | |
Urzędów | Mean | 51.1 | 1.6 | 0.2 | 3.3 | 28.3 | 0.1 | 3.1 | 4.8 |
Min | 0 | 0 | 0.1 | 1.4 | 2 | 0 | 0.7 | 0 | |
Max | 99.9 | 44.7 | 8.7 | 9.8 | 83.8 | 0.3 | 15.5 | 33.9 | |
Wólka | Mean | 62.1 | 1.4 | 0.1 | 2.6 | 13.3 | 0.1 | 2.6 | 6.1 |
Min | 0 | 0 | 0.1 | 1.1 | 1.1 | 0 | 0.5 | 0 | |
Max | 99.9 | 41.7 | 3.2 | 13.7 | 45 | 0.3 | 8.2 | 35.6 | |
Zakrzew | Mean | 88.9 | 2.5 | 0.2 | 3.4 | 29.1 | 0.1 | 3.2 | 4.4 |
Min | 16.4 | 0 | 0.1 | 1.5 | 2.2 | 0 | 1 | 0 | |
Max | 100 | 44.9 | 5.5 | 11.5 | 73.3 | 0.4 | 12.9 | 47.6 | |
Zamość | Mean | 73.5 | 0.6 | 0.1 | 2.4 | 15.6 | 0.1 | 2.5 | 5.1 |
Min | 0 | 0 | 0.1 | 1.1 | 1.4 | 0 | 0.6 | 0 | |
Max | 100 | 49.6 | 8 | 7.9 | 88.9 | 0.4 | 8 | 36.3 |
Commune | Very Low | Low | Moderate | High | Very High | Total |
---|---|---|---|---|---|---|
Dzierzkowice | 2 | 93 | 203 | 125 | 3 | 426 |
Głusk | 7 | 194 | 387 | 27 | 0 | 615 |
Krasnobród | 11 | 54 | 167 | 108 | 3 | 343 |
Poniatowa | 33 | 202 | 209 | 10 | 0 | 454 |
Szczebrzeszyn | 26 | 128 | 359 | 161 | 12 | 686 |
Trzydnik Duży | 5 | 56 | 300 | 124 | 16 | 501 |
Urzędów | 22 | 149 | 302 | 102 | 1 | 576 |
Wolka | 19 | 165 | 207 | 16 | 0 | 407 |
Zakrzew | 0 | 22 | 241 | 81 | 19 | 363 |
Zamość | 28 | 374 | 604 | 90 | 1 | 1097 |
Total | 153 | 1437 | 2979 | 844 | 55 | 5468 |
Municipality | Class of Susceptibility | Total Area (km2) | Share (%) | ||||
---|---|---|---|---|---|---|---|
Very Low (%) | Low (%) | Moderate (%) | High [%] | Very High [%] | |||
Dzierzkowice | 0.1 | 16.7 | 65.2 | 17.8 | 0.0 | 18.8 | 20.8 |
Głusk | 3.7 | 40.5 | 53.2 | 2.4 | 0.0 | 33.0 | 43.3 |
Krasnobród | 0.8 | 6.8 | 58.0 | 33.3 | 0.8 | 18.3 | 14.2 |
Poniatowa | 3.3 | 35.6 | 59.1 | 1.8 | 0.0 | 39.0 | 37.5 |
Szczebrzeszyn | 2.7 | 17.2 | 52.7 | 26.7 | 0.4 | 27.3 | 21.7 |
Trzydnik Duży | 0.6 | 28.7 | 51.3 | 18.3 | 0.9 | 31.4 | 28.4 |
Urzędów | 4.3 | 36.9 | 50.21 | 8.4 | 0.0 | 48.3 | 33.9 |
Wolka | 20.0 | 42.0 | 36.63 | 1.2 | 0.0 | 36.7 | 29.6 |
Zakrzew | 0.0 | 8.0 | 51.24 | 38.0 | 2.6 | 23.8 | 28.1 |
Zamość | 0.6 | 43.0 | 51.38 | 4.9 | 0.0 | 63.0 | 29.3 |
Dzierzkowice | Głusk | Krasnobród | Poniatowa | Szczebrzeszyn | Trzydnik Duży | Urzędów | Wólka | Zakrzew | Zamość | |
---|---|---|---|---|---|---|---|---|---|---|
Selected indicators | ||||||||||
Construction permits and notifications (2018–2023) | 106 | 1127 | 145 | 46 | 117 | 53 | 55 | 603 | 18 | 213 |
New residential buildings put into operation (2021–2023) | 48 | 589 | 71 | 123 | 72 | 24 | 113 | 306 | 7 | 931 |
Land use planning | ||||||||||
Total number of local plans | 1 | 16 | 14 | 9 | 6 | 4 | 21 | 10 | - | 43 |
Plans made under the 2003 law | 1 | 6 | 12 | 7 | 5 | 4 | 20 | 9 | - | 26 |
Total area of the municipality covered by plans (ha) | 8722 | 6426 | 12,600 | 8416 | 576 | 41 | 11,906 | 7276 | - | 1899.8 |
The area of the municipality covered by plans under the 2003 law (ha) | 8722 | 350 | 137 | 1778 | 571 | 41 | 557.7 | 350 | - | 1470 |
Area covered by local plans (%) | 99.9 | 100 | 99.3 | 99.6 | 4.7 | 0.4 | 100 | 100 | - | 9.7 |
Issued decisions on zoning and land use in 2009–2022 | ||||||||||
On establishing the location of a public purpose investment | 0 | 0 | 1 | 0 | 220 | 80 | 0 | 0 | 23 | 830 |
Of total development conditions | 0 | 0 | 6 | 0 | 786 | 631 | 0 | 0 | 187 | 3675 |
Municipality | Level of Susceptibility (%) | Share of Buildings Located on Flowlines (%) | Land Use Planning Documents | |
---|---|---|---|---|
Study (Year) | Local Plan (Year) | |||
Dzierzkowice | High: 17.8 | 13.0 | (2002; revised 2011, 2019) increase in forest cover, including afforestation of watershed areas; increase in the area of grasslands (poor land, located on a slope with an average slope of more than 15%, periodically flooded) | (2003) maximum permissible built-up area can be up to 30% of the plot (as amended in 2013), drainage of rainwater into the ground, preservation of old stands of trees when introducing new developments, prohibition of destruction of midfield and roadside trees, minimum 40% biologically active areas in developed plots |
Głusk | High: 2.4 | 18.5 | (2018) leaving unmanaged greenery; recommendations for minimum shares of biologically active areas, depending on functions | (2000; amended 2006, 2021) permitted surface discharge of rainwater into the ground in residential development areas |
Krasnobród | High and very high: 33.4 | 15.6 | (2001; amended 2008, 2013, 2014, 2015, 2017) afforestation; management rules in dry depressions; prohibition of change of use and designation of forests to non-forest use, except for areas designated in the local plan for development for tourism and resort functions | (2004; amended 2021 for the rural area) afforestation of areas of land; preserving the private forests; (2004; amended 2021 for the city) preservation of greenery in tourist service areas; minimum 60–70% biologically active areas in developed plots, depending on the function |
Poniatowa | High: 1.8 | 14.5 | (2001; amended 2011, 2012, 2017, 2020, 2023) afforestation; introduction of midfield greenery in agricultural areas; recommendation of minimum shares of biologically active areas, depending on functions | (2003) indicates agricultural land without development rights |
Szczebrzeszyn | High and very high 27.0 | 21.7 | (1998) increasing retention through afforestation | (2007) a minimum of 70% biologically active area in a farm plot, (2008) a minimum of 70% biologically active area in single-family development plots |
Trzydnik Duży | High and very high: 19.2 | 10.5 | (2001; amended 2018) indicates areas for afforestation; introduction of midfield greenery in agricultural areas; recommendations of minimum shares of biologically active areas, depending on functions | (2018, 2019, 2020) at-risk areas are not within the boundaries of local plans |
Urzędów | High: 8.4 | 13.6 | (2001; amended 2008, 2009, 2011, 2015,2016, 2017, 2022) indicates areas for afforestation; introduction of midfield greenery in agricultural areas; recommendations of minimum shares of biologically active areas, depending on functions | (2003; amended 2009, 2012, 2014) prohibits location of new residential, business, and service development outside the boundaries of existing habitat plots; requires biologically active area of at least 30% of the area of the building plot |
Wolka | High: 1.2 | 12.4 | (2018) afforestation of wastelands; preservation of managed and unmanaged greenery in developed areas and areas requiring development; recommendation of minimum shares of biologically active areas, depending on functions | (2001; amended 2009, 2011) prohibits development in agricultural areas, introduction of midfield vegetation, afforestation of wasteland, requirement to provide public greenery in multi-family residential areas, order to preserve existing greenery, biologically active area of at least 45% of the area of the building plot |
Zakrzew | High and very high: 40.0 | 20.5 | (2001) increasing retention | document not available; therefore, contents not analyzed |
Zamość | High and very high: 49.0 | 9.8 | (1998; amended 2007, 2008, 2011, 2014, 2020, 2023) allocation of soils unsuitable for agriculture for afforestation or large-scale investments; maintenance of forest; afforestation of wasteland and soils prone to erosion in the vicinity of watercourses; recommendation of minimum shares of biologically active areas, depending on functions | (Am. 1996) preservation of forested areas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gawrysiak, L.; Baran-Zgłobicka, B.; Zgłobicki, W. Flash Floods Hazard to the Settlement Network versus Land Use Planning (Lublin Upland, East Poland). Appl. Sci. 2024, 14, 8425. https://doi.org/10.3390/app14188425
Gawrysiak L, Baran-Zgłobicka B, Zgłobicki W. Flash Floods Hazard to the Settlement Network versus Land Use Planning (Lublin Upland, East Poland). Applied Sciences. 2024; 14(18):8425. https://doi.org/10.3390/app14188425
Chicago/Turabian StyleGawrysiak, Leszek, Bogusława Baran-Zgłobicka, and Wojciech Zgłobicki. 2024. "Flash Floods Hazard to the Settlement Network versus Land Use Planning (Lublin Upland, East Poland)" Applied Sciences 14, no. 18: 8425. https://doi.org/10.3390/app14188425
APA StyleGawrysiak, L., Baran-Zgłobicka, B., & Zgłobicki, W. (2024). Flash Floods Hazard to the Settlement Network versus Land Use Planning (Lublin Upland, East Poland). Applied Sciences, 14(18), 8425. https://doi.org/10.3390/app14188425