Improving Ship Fuel Consumption and Carbon Intensity Prediction Accuracy Based on a Long Short-Term Memory Model with Self-Attention Mechanism
Abstract
:1. Introduction
2. Data Acquisition and Processing
2.1. AIS Data Acquisition and Processing
2.2. Sensor Data Acquisition and Processing
2.3. Navigational Environment Data Acquisition and Processing
3. Methodological Approach
3.1. Carbon Intensity Prediction Methodology
3.2. Ship Fuel Consumption Prediction Model Based on SA-LSTM
3.3. Carbon Intensity Rating Method
4. Results and Discussions
4.1. Feature Selection Analysis
- (1)
- Variance Selection
- (2)
- Correlation Coefficient Selection
- (3)
- Recursive feature elimination
- (4)
- Feature selection based on LASSO
4.2. The Result of Fuel Consumption Prediction
4.3. The Assessment of Carbon Intensity
4.4. The Analysis of Carbon Intensity Rating Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MEPC.328(76). Amendments to the Annex of the Protocol of 1997 to Amend the International Convention for the Prevention of Pollution from Ships, 1973, as Modified by the Protocol of 1978 Relating Thereto. 2021 Revisez MARPOL Annex VI. 2021. Available online: https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.328(76).pdf (accessed on 8 December 2022).
- Chuah, L.F.; Mokhtar, K.; Ruslan, S.M.M.; Bakar, A.A.; Abdullah, M.A.; Osman, N.H.; Bokhari, A.; Mubashir, M.; Show, P.L. Implementation of the energy efficiency existing ship index and carbon intensity indicator on domestic ship for marine environmental protection. Environ. Res. 2023, 222, 115348. [Google Scholar] [CrossRef] [PubMed]
- Oldendorff. CII Is Not the Answer, What Do We Do Now? 2022. Available online: https://oldendorff-website-assets.s3.amazonaws.com/assets/downloads/Oldendorff-EMISSIONS.pdf (accessed on 8 January 2023).
- Hoffmann, M. The Impact of ‘Fouling Idling’on Ship Performance and Carbon Intensity Indicator (CII). 2022. Available online: https://selektope.com/wp-content/uploads/2022/06/HullPIC-2022_ITech-conference-paper-.pdf (accessed on 4 January 2023).
- Chen, Z.S.; Lam, J.S.L.; Xiao, Z. Prediction of harbour vessel fuel consumption based on machine learning approach. Ocean Eng. 2023, 278, 114483. [Google Scholar] [CrossRef]
- Martić, I.; Degiuli, N.; Grlj, C.G. Prediction of Added Resistance of Container Ships in Regular Head Waves Using an Artificial Neural Network. J. Mar. Sci. Eng. 2023, 11, 1293. [Google Scholar] [CrossRef]
- Chen, Z.S.; Lam, J.S.L.; Xiao, Z. Prediction of harbour vessel emissions based on machine learning approach. Transp. Res. Part D Transp. Environ. 2024, 131, 104214. [Google Scholar] [CrossRef]
- Su, M.; Su, Z.Q.; Cao, S.L.; Park, K.S.; Bae, S.H. Fuel Consumption Prediction and Optimization Model for Pure Car/Truck Transport Ships. J. Mar. Sci. Eng. 2023, 11, 1231. [Google Scholar] [CrossRef]
- Wang, S.; Ji, B.; Zhao, J.; Liu, W.; Xu, T. Predicting ship fuel consumption based on LASSO regression. Transp. Res. Part D Transp. Environ. 2018, 65, 817–824. [Google Scholar] [CrossRef]
- Jeon, M.; Noh, Y.; Shin, Y.; Lim, O.K.; Lee, I.; Cho, D. Prediction of ship fuel consumption by using an artificial neural network. J. Mech. Sci. Technol. 2018, 32, 5785–5796. [Google Scholar] [CrossRef]
- Ren, F.; Wang, S.; Liu, Y.; Han, Y. Container Ship Carbon and Fuel Estimation in Voyages Utilizing Meteorological Data with Data Fusion and Machine Learning Techniques. Math. Probl. Eng. 2022, 2022, 4773395. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Chen, Y.; Nguyen, S.; Zhang, W.; Schönborn, A.; Sun, Z. Data fusion and machine learning for ship fuel efficiency modeling: Part I—Voyage report data and meteorological data. Commun. Transp. Res. 2022, 2, 100074. [Google Scholar] [CrossRef]
- Du, Y.; Chen, Y.; Li, X.; Schönborn, A.; Sun, Z. Data fusion and machine learning for ship fuel efficiency modeling: Part II—Voyage report data, AIS data and meteorological data. Commun. Transp. Res. 2022, 2, 100073. [Google Scholar] [CrossRef]
- Du, Y.; Chen, Y.; Li, X.; Schönborn, A.; Sun, Z. Data fusion and machine learning for ship fuel efficiency modeling: Part III—Sensor data and meteorological data. Commun. Transp. Res. 2022, 2, 100072. [Google Scholar] [CrossRef]
- Uyanık, T.; Karatuğ, Ç.; Arslanoğlu, Y. Machine learning approach to ship fuel consumption: A case of container vessel. Transp. Res. Part D Transp. Environ. 2020, 84, 102389. [Google Scholar] [CrossRef]
- Waswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Liu, G.; Wang, K.; Hao, X.; Zhang, Z.; Zhao, Y.; Xu, Q. SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system. Energy 2022, 241, 122768. [Google Scholar] [CrossRef]
- Han, D.; Wang, S.; Hua, Y.; Bai, H.; Guo, H.; Huang, Y. A Load Classification Method Based on SA-LSTM Network Considering Category Imbalance Processing. In Proceedings of the 2022 2nd International Conference on Intelligent Technology and Embedded Systems (ICITES), Chengdu, China, 23–26 September 2022; pp. 109–115. [Google Scholar]
- Cai, S.; Gao, H.; Zhang, J.; Peng, M. A self-attention-LSTM method for dam deformation prediction based on CEEMDAN optimization. Appl. Soft Comput. 2024, 159, 111615. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, Y.; Ji, S.; Mae, M.; Imaizumi, T. Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data. Appl. Energy 2024, 359, 122709. [Google Scholar] [CrossRef]
- Rao, A.R.; Reimherr, M. Modern non-linear function-on-function regression. Stat. Comput. 2023, 33, 130. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, J.; Liu, Y.; Yuan, Y.; Zhang, Q.; Li, Z. Fitting analysis of inland ship fuel consumption considering navigation status and environmental factors. IEEE Access 2020, 8, 187441–187454. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, J.; Zhang, Q.; Liu, Y.; Yuan, Y.; Li, Z. Prediction and optimisation of fuel consumption for inland ships considering real-time status and environmental factors. Ocean Eng. 2021, 221, 108530. [Google Scholar] [CrossRef]
- Kalajdžić, M.; Vasilev, M.; Momčilović, N. Power reduction considerations for bulk carriers with respect to novel energy efficiency regulations. Brodogr. Teor. i Praksa Brodogr. i Pomor. Teh. 2022, 73, 79–92. [Google Scholar] [CrossRef]
- Wang, S.; Psaraftis, H.N.; Qi, J. Paradox of international maritime organization’s carbon intensity indicator. Commun. Transp. Res. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Elkafas, A.G.; Rivarolo, M.; Massardo, A.F. Environmental economic analysis of speed reduction measure onboard container ships. Environ. Sci. Pollut. Res. 2023, 30, 59645–59659. [Google Scholar] [CrossRef] [PubMed]
- Dewan, M.H.; Godina, R. Effective Training of Seafarers on Energy Efficient Operations of Ships in the Maritime Industry. Procedia Comput. Sci. 2023, 217, 1688–1698. [Google Scholar] [CrossRef]
- Li, X.Y.; Zuo, Y.; Jiang, J.H. Application of Regression Analysis Using Broad Learning System for Time-Series Forecast of Ship Fuel Consumption. Sustainability 2023, 15, 380. [Google Scholar] [CrossRef]
- Yildiz, B. Prediction of residual resistance of a trimaran vessel by using an artificial neural network. Brodogr. Teor. i Praksa Brodogr. i Pomor. Teh. 2022, 73, 127–140. [Google Scholar] [CrossRef]
- Onur, Y.; Murat, B.; Mustafa, S. Comparative study of machine learning techniques to predict fuel consumption of a marine diesel engine. Ocean Eng. 2023, 286, 115505. [Google Scholar]
- Xie, X.; Sun, B.; Li, X.; Olsson, T.; Maleki, N.; Ahlgren, F. Fuel Consumption Prediction Models Based on Machine Learning and Mathematical Methods. J. Mar. Sci. Eng. 2023, 11, 738. [Google Scholar] [CrossRef]
- Bayraktar, M.; Yuksel, O. A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations. Ocean Eng. 2023, 278, 114295. [Google Scholar] [CrossRef]
- Gianni, M.; Pietra, A.; Coraddu, A.; Taccani, R. Impact of SOFC Power Generation Plant on Carbon Intensity Index (CII) Calculation for Cruise Ships. J. Mar. Sci. Eng. 2022, 10, 1478. [Google Scholar] [CrossRef]
- Rauca, L.; Batrinca, G. Impact of Carbon Intensity Indicator on the Vessels’ Operation and Analysis of Onboard Operational Measures. Sustainability 2023, 15, 11387. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Lu, Y.; Hu, Z. Assessment of ship speed, operational carbon intensity indicator penalty and charterer profit of time charter ships. Heliyon 2023, 9, e20719. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, T.; Wang, Z.; Zeng, X. Research on Carbon Intensity Prediction Method for Ships Based on Sensors and Meteorological Data. J. Mar. Sci. Eng. 2023, 11, 2249. [Google Scholar] [CrossRef]
Parameters | Interpretation |
---|---|
input gate | |
forget gate | |
cell state | |
output gate | |
activation function | |
the weight matrix from to the input gate | |
the input at the current time step | |
the bias of to the input gate | |
the weight matrix from to the input gate | |
the hidden state at the previous time step | |
the bias of to the input gate | |
the weight matrix from to the forget gate | |
the bias of to the forget gate | |
the weight matrix from to the forget gate | |
the bias of to the forget gate | |
activation function | |
the weight matrix from input to the candidate memory cell | |
the bias of the candidate memory cell | |
the weight matrix from to the candidate memory cell | |
the bias from to the candidate memory cell | |
the weight matrix from input to the output gate | |
the bias of to the output gate | |
the weight matrix from to the output gate | |
the bias of from to the output gate | |
the memory cell state at the current time step | |
the memory cell state at the previous time step | |
hidden state |
Data Sources | Feature | Origin Data/(Set1) | Variance/(Set2) | Correlation Coefficient/(Set3) | RFECV/(Set4) | LASSO/(Set5) |
---|---|---|---|---|---|---|
AIS | speed | √ | √ | √ | √ | |
rot | √ | √ | √ | √ | ||
draught | √ | √ | ||||
distance | √ | √ | √ | √ | ||
Meteorological and Sea State Data | wind speed | √ | √ | √ | ||
mpts | √ | √ | √ | |||
mpww | √ | √ | ||||
mwp | √ | √ | √ | |||
shww | √ | √ | √ | |||
swh | √ | √ | √ | |||
wwh | √ | |||||
swell direction | √ | √ | √ | √ | ||
dww | √ | √ | √ | √ | ||
wd | √ | √ | √ | √ | ||
sst | √ | √ | √ | √ | ||
current spped | √ | √ | √ | |||
wind direction | √ | √ | √ | √ | √ | |
current direction | √ | √ | √ | |||
sensors data | merpm | √ | √ | √ | √ | √ |
trim | √ | √ | √ | √ | ||
power | √ | √ | √ | √ | √ | |
FC | √ | √ | √ | √ | √ |
Model | Data Sets | MAE | MSE | RMSE | MAPE |
---|---|---|---|---|---|
XGBoost | Set1 | 0.4173 | 0.2801 | 0.5292 | 0.3148 |
Set2 | 0.4038 | 0.2924 | 0.5408 | 0.3004 | |
Set3 | 0.4167 | 0.2938 | 0.5420 | 0.3156 | |
Set4 | 0.4126 | 0.2828 | 0.5318 | 0.3083 | |
Set5 | 0.4172 | 0.2823 | 0.5313 | 0.3184 | |
RF | Set1 | 0.4165 | 0.2843 | 0.5332 | 0.3161 |
Set2 | 0.4131 | 0.2893 | 0.5328 | 0.3098 | |
Set3 | 0.4140 | 0.2866 | 0.5353 | 0.3132 | |
Set4 | 0.4130 | 0.2859 | 0.5347 | 0.3095 | |
Set5 | 0.4146 | 0.2846 | 0.5335 | 0.3156 | |
LGB | Set1 | 0.4120 | 0.2831 | 0.5321 | 0.3111 |
Set2 | 0.4082 | 0.2829 | 0.5319 | 0.3073 | |
Set3 | 0.4120 | 0.2877 | 0.5364 | 0.3119 | |
Set4 | 0.4127 | 0.2864 | 0.5351 | 0.3066 | |
Set5 | 0.4123 | 0.2782 | 0.5275 | 0.3109 | |
ET | Set1 | 0.4227 | 0.2865 | 0.5353 | 0.3226 |
Set2 | 0.4199 | 0.2861 | 0.5349 | 0.3152 | |
Set3 | 0.4195 | 0.2898 | 0.5383 | 0.3173 | |
Set4 | 0.4203 | 0.2911 | 0.5395 | 0.3172 | |
Set5 | 0.4223 | 0.2857 | 0.5345 | 0.3205 | |
LASSO | Set1 | 0.4299 | 0.2859 | 0.5347 | 0.3172 |
Set2 | 0.4301 | 0.2859 | 0.5347 | 0.3177 | |
Set3 | 0.4309 | 0.2860 | 0.5348 | 0.3197 | |
Set4 | 0.4341 | 0.2910 | 0.5394 | 0.3261 | |
Set5 | 0.4314 | 0.2862 | 0.5350 | 0.3207 | |
SVR | Set1 | 0.5120 | 0.4932 | 0.7023 | 0.5000 |
Set2 | 0.5110 | 0.5005 | 0.7075 | 0.4878 | |
Set3 | 0.5142 | 0.4892 | 0.6994 | 0.5091 | |
Set4 | 0.4717 | 0.3999 | 0.6324 | 0.3955 | |
Set5 | 0.5111 | 0.5021 | 0.7086 | 0.4858 | |
ANN | Set1 | 0.4356 | 0.3285 | 0.5731 | 0.3434 |
Set2 | 0.4245 | 0.2960 | 0.5440 | 0.3127 | |
Set3 | 0.4356 | 0.3285 | 0.5731 | 0.3434 | |
Set4 | 0.4238 | 0.3208 | 0.5664 | 0.3278 | |
Set5 | 0.4278 | 0.2915 | 0.5399 | 0.3305 | |
ARIMA | Set1 | 0.5958 | 0.6142 | 0.7837 | 51.4353 |
Set2 | 0.5908 | 0.6057 | 0.7783 | 51.4297 | |
Set3 | 0.5908 | 0.6057 | 0.7783 | 51.4297 | |
Set4 | 0.5824 | 0.6032 | 0.7767 | 51.4199 | |
Set5 | 0.5725 | 0.6012 | 0.7754 | 51.4138 | |
Exponential Smoothing | Set1 | 0.5443 | 0.5121 | 0.7156 | 50.3562 |
Set2 | 0.5343 | 0.5001 | 0.7072 | 50.3357 | |
Set3 | 0.5343 | 0.5001 | 0.7072 | 50.3357 | |
Set4 | 0.5312 | 0.4988 | 0.7063 | 50.3328 | |
Set5 | 0.5238 | 0.4957 | 0.7041 | 50.3255 | |
LSTM | Set1 | 0.3726 | 0.3304 | 0.5748 | 0.2596 |
Set2 | 0.3885 | 0.2749 | 0.5243 | 0.2891 | |
Set3 | 0.3793 | 0.3024 | 0.5499 | 0.2701 | |
Set4 | 0.3766 | 0.2880 | 0.5367 | 0.2646 | |
Set5 | 0.3720 | 0.2738 | 0.5233 | 0.2633 | |
SA-LSTM | Set1 | 0.3270 | 0.2570 | 0.5070 | 0.2471 |
Set2 | 0.3347 | 0.2492 | 0.4992 | 0.2541 | |
Set3 | 0.3474 | 0.2857 | 0.5345 | 0.2609 | |
Set4 | 0.3474 | 0.2857 | 0.5345 | 0.2609 | |
Set5 | 0.3067 | 0.2405 | 0.4904 | 0.2428 |
Model | Annual CII | Error | Accuracy | Rating Grade |
---|---|---|---|---|
XGBoost | 7.7776 | 0.0338 | 99.58% | A |
RF | 7.7987 | 0.0128 | 99.84% | A |
LGB | 7.8211 | 0.0096 | 99.88% | A |
ET | 7.8219 | 0.0104 | 99.87% | A |
LASSO | 7.8013 | 0.0102 | 99.87% | A |
SVR | 7.7927 | 0.0188 | 99.76% | A |
ANN | 7.3837 | 0.4277 | 94.52% | A |
ARIMA | 1.3773 | 6.4342 | 17.63% | A |
Exponential Smoothing | 1.4739 | 6.3376 | 18.86% | A |
LSTM | 7.3723 | 0.4391 | 94.38% | A |
SA-LSTM | 7.8130 | 0.0016 | 99.98% | A |
True | 7.8115 | 0 | 100% | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Lu, T.; Han, Y.; Zhang, C.; Zeng, X.; Li, W. Improving Ship Fuel Consumption and Carbon Intensity Prediction Accuracy Based on a Long Short-Term Memory Model with Self-Attention Mechanism. Appl. Sci. 2024, 14, 8526. https://doi.org/10.3390/app14188526
Wang Z, Lu T, Han Y, Zhang C, Zeng X, Li W. Improving Ship Fuel Consumption and Carbon Intensity Prediction Accuracy Based on a Long Short-Term Memory Model with Self-Attention Mechanism. Applied Sciences. 2024; 14(18):8526. https://doi.org/10.3390/app14188526
Chicago/Turabian StyleWang, Zhihuan, Tianye Lu, Yi Han, Chunchang Zhang, Xiangming Zeng, and Wei Li. 2024. "Improving Ship Fuel Consumption and Carbon Intensity Prediction Accuracy Based on a Long Short-Term Memory Model with Self-Attention Mechanism" Applied Sciences 14, no. 18: 8526. https://doi.org/10.3390/app14188526
APA StyleWang, Z., Lu, T., Han, Y., Zhang, C., Zeng, X., & Li, W. (2024). Improving Ship Fuel Consumption and Carbon Intensity Prediction Accuracy Based on a Long Short-Term Memory Model with Self-Attention Mechanism. Applied Sciences, 14(18), 8526. https://doi.org/10.3390/app14188526