MD-TransUNet: An Image Segmentation Network for Car Front Face Design
Abstract
:1. Introduction
- (1)
- For complex intricate areas such as headlights and grilles, the shortcomings of existing methods in feature extraction, edge information retention, and multi-scale feature fusion are analyzed, and a new car front face segmentation network is proposed.
- (2)
- The improved segmentation model MD-TransUNet has a good segmentation effect on headlights and grilles.
- (3)
- The innovative combination of the segmentation network and image restoration is proposed, which allows details such as the headlights and air intake grille to show diversity while maintaining the overall consistency of the front face of the car. This improves the efficiency and effectiveness of the design process and provides an innovative technical approach for the field of automotive design.
2. Materials and Methods
2.1. Overall Architecture of the MD-TransUNet Network
2.2. MSAG Module
2.3. DCGCN Module
3. Experimental Design
3.1. Dataset
3.2. Experimental Environment
3.3. Evaluation Metrics
4. Experimental Results
4.1. Performance Comparison
4.2. Ablation Experiments
4.3. Design of Automotive Front Face Elements Using Semantic Segmentation and Image Restoration
5. Conclusions
- Model limitations: Although MSAG and DCGCN enhance global information capture, MD-TransUNet may struggle with fine-grained features like complex edges, leading to less precise segmentation in certain areas;
- Dataset limitations: The dataset, consisting solely of controlled frontal car views, lacks diversity, limiting the model’s ability to generalize to more complex scenarios. Underrepresented features may lead to inaccuracies during testing;
- Loss function limitations: The pixel-based loss function (e.g., cross-entropy loss) focuses on overall classification but is less sensitive to local details, like edge precision, resulting in segmentation discrepancies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nirmala, J. Foreign Direct Investment in Automobile Sector in India. Res. Rev. Int. J. Multidiscip. 2023, 8, 71–74. [Google Scholar]
- Furuta, M.; Sato, T.; Otsuka, K. Successful Foreign Direct Investment Through the Development of Parts Supply Industries in the Host Country: A Study of India’s Automobile Manufacturing Sector. Dev. Econ. 2024, 62, 195–237. [Google Scholar] [CrossRef]
- Volkova, N.A.; Katanaev, N.T.; Chebyshev, A.E. End-to-end design of a competitive car with a high level of handling and safety indicators. Вестник Университета 2022, 79–89. [Google Scholar] [CrossRef]
- Shutong, W. Methods of Automotive Design with Artificial Intelligence Intervention. China Sci. Technol. Inf. 2023, 159–162. [Google Scholar]
- Yijiong, S. Vehicle manufacturing efficiency improvement strategy based on full life cycle. Mach. Manuf. 2021, 059, 76–80. [Google Scholar]
- Wang, B. Automotive Styling Creative Design; Tsinghua University Press: Beijing, China, 2019; Chapter 1; p. 1. [Google Scholar]
- Huang, J.; Chen, B.; Yan, Z.; Ounis, I.; Wang, J. GEO: A Computational Design Framework for Automotive Exterior Facelift. ACM Trans. Knowl. Discov. Data 2023, 17, 1–20. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Z.; Yang, B.; Wang, C. Product styling cognition based on Kansei engineering theory and implicit measurement. Appl. Sci. 2023, 13, 9577. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, K.; Wu, X.; Yang, C. Form generative approach for front face design of electric vehicle under female aesthetic preferences. Adv. Eng. Inform. 2024, 62, 102571. [Google Scholar] [CrossRef]
- Duan, J.J.; Luo, P.S.; Liu, Q.; Sun, F.A.; Zhu, L.M. A modeling design method for complex products based on LSTM neural network and Kansei engineering. Appl. Sci. 2023, 13, 710. [Google Scholar] [CrossRef]
- GAC Research Institute. GAC Group Research and Development. Available online: https://www.gac.com.cn/cn/ (accessed on 16 June 2023).
- Huang, J.; Dong, X.; Song, W.; Li, H.; Zhou, J.; Cheng, Y.; Liao, S.; Chen, L.; Yan, Y.; Liao, S.; et al. Consistentid: Portrait generation with multimodal fine-grained identity preserving. arXiv 2024, arXiv:2404.16771. [Google Scholar]
- Chen, W.; Zhang, J.; Wu, J.; Wu, H.; Xiao, X.; Lin, L. ID-Aligner: Enhancing Identity-Preserving Text-to-Image Generation with Reward Feedback Learning. arXiv 2024, arXiv:2404.15449. [Google Scholar]
- Wang, Q.; Li, B.; Li, X.; Cao, B.; Ma, L.; Lu, H.; Jia, X. CharacterFactory: Sampling Consistent Characters with GANs for Diffusion Models. arXiv 2024, arXiv:2404.15677. [Google Scholar]
- Guo, Z.; Wu, Y.; Chen, Z.; Chen, L.; He, Q. PuLID: Pure and Lightning ID Customization via Contrastive Alignment. arXiv 2024, arXiv:2404.16022. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders for medical image segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Ji, Z.; Sun, H.; Yuan, N.; Zhang, H.; Sheng, J.; Zhang, X.; Ganchev, I. BGRD-TransUNet: A novel TransUNet-based model for ultrasound breast lesion segmentation. IEEE Access 2024, 12, 31182–31196. [Google Scholar] [CrossRef]
- Pan, S.; Liu, X.; Xie, N.; Chong, Y. EG-TransUNet: A transformer-based U-Net with enhanced and guided models for biomedical image segmentation. BMC Bioinform. 2023, 24, 85. [Google Scholar] [CrossRef]
- Jiang, T.; Zhou, J.; Xie, B.; Liu, L.; Ji, C.; Liu, Y.; Liu, B.; Zhang, B. Improved YOLOv8 Model for Lightweight Pigeon Egg Detection. Animals 2024, 14, 1226. [Google Scholar] [CrossRef]
- Fan, B.; Qin, X.; Wu, Q.; Fu, J.; Hu, Z.; Wang, Z. Instance segmentation algorithm for sorting dismantling components of end-of-life vehicles. Eng. Appl. Artif. Intell. 2024, 133, 108318. [Google Scholar] [CrossRef]
- Han, D.; Zhang, C.; Wang, L.; Xu, X.; Liu, Y. Automatic Outer Contour Detection and Quantification of Vehicles Using Monocular Vision. Struct. Control. Health Monit. 2024, 2024, 6692820. [Google Scholar] [CrossRef]
- Tang, F.; Wang, L.; Ning, C.; Xian, M.; Ding, J. Cmu-net: A strong convmixer-based medical ultrasound image segmentation network. In Proceedings of the 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, Colombia, 18–21 April 2023; pp. 1–5. [Google Scholar]
- Li, Y.; Zhang, Y.; Cui, W.; Lei, B.; Kuang, X.; Zhang, T. Dual encoder-based dynamic-channel graph convolutional network with edge enhancement for retinal vessel segmentation. IEEE Trans. Med. Imaging 2022, 41, 1975–1989. [Google Scholar] [CrossRef] [PubMed]
- Song, C.H.; Yoon, J.; Choi, S.; Avrithis, Y. Boosting vision transformers for image retrieval. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 107–117. [Google Scholar]
- Courant, R.; Edberg, M.; Dufour, N.; Kalogeiton, V. Transformers and visual Transformers. In Machine Learning for Brain Disorders; Humana: New York, NY, USA, 2023; pp. 193–229. [Google Scholar]
- Basavaprasad, B.; Ravindra, S.H. A survey on traditional and graph theoretical techniques for image segmentation. Int. J. Comput. Appl. 2014, 975, 8887. [Google Scholar]
- Li, Y.; Liu, Y.; Guo, Y.-Z.; Liao, X.-F.; Hu, B.; Yu, T. Spatio-temporal-spectral hierarchical graph convolutional network with semisupervised active learning for patient-specific seizure prediction. IEEE Trans. Cybern. 2021, 52, 12189–12204. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3162–3177. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, F.; Liu, L.; Liu, W.; Nie, L.; Yang, Y.; Shen, H.T. Graph convolutional network hashing. IEEE Trans. Cybern. 2018, 50, 1460–1472. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, J.; Lu, G.; Yu, H.; Zhang, D. Label co-occurrence learning with graph convolutional networks for multi-label chest x-ray image classification. IEEE J. Biomed. Health Inform. 2020, 24, 2292–2302. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Christen, P.; Hand, D.J.; Kirielle, N. A review of the F-measure: Its history, properties, criticism, and alternatives. ACM Comput. Surv. 2023, 56, 1–24. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Azad, R.; Heidari, M.; Shariatnia, M.; Aghdam, E.K.; Karimijafarbigloo, S.; Adeli, E.; Merhof, D. Transdeeplab: Convolution-free transformer-based deeplab v3+ for medical image segmentation. In Predictive Intelligence in Medicine; Springer Nature: Cham, Switzerland, 2022; pp. 91–102. [Google Scholar]
- Yin, M.; Yao, Z.; Cao, Y.; Li, X.; Zhang, Z.; Lin, S.; Hu, H. Disentangled non-local neural networks. In Proceedings of the Computer Vision—ECCV 2020, 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 191–207. [Google Scholar]
- Safa, A.; Mohamed, A.; Issam, B.; Mohamed-Yassine, H. SegFormer: Semantic segmentation based tranformers for corrosion detection. In Proceedings of the 2023 International Conference on Networking and Advanced Systems (ICNAS), Algiers, Algeria, 21–23 October 2023; pp. 1–6. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 7262–7272. [Google Scholar]
Methods | mFscore/% | mIOU/% | OA/% |
---|---|---|---|
DeeplabV3+ | 94.90 | 90.46 | 98.59 |
DNLNet | 94.30 | 89.44 | 98.50 |
SegFormer | 94.10 | 89.09 | 98.46 |
PSPNet | 94.05 | 89.01 | 98.41 |
Segmenter | 95.25 | 91.10 | 98.76 |
TransUNet | 95.03 | 90.69 | 98.61 |
MD-TransUNet (our) | 95.81 | 92.08 | 98.86 |
Methods | mFscore/% | mIOU/% | OA/% |
---|---|---|---|
TransUNet | 95.03 | 90.69 | 98.61 |
TransUNet + MSAG | 95.30 | 91.18 | 98.70 |
TransUNet + GCN | 95.43 | 91.42 | 98.79 |
TranUNet + GCN + MSAG | 95.81 | 92.08 | 98.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, J.; Shi, H.; Su, J.; Zhang, S.; Zhou, A. MD-TransUNet: An Image Segmentation Network for Car Front Face Design. Appl. Sci. 2024, 14, 8688. https://doi.org/10.3390/app14198688
Ouyang J, Shi H, Su J, Zhang S, Zhou A. MD-TransUNet: An Image Segmentation Network for Car Front Face Design. Applied Sciences. 2024; 14(19):8688. https://doi.org/10.3390/app14198688
Chicago/Turabian StyleOuyang, Jinyan, Hongru Shi, Jianning Su, Shutao Zhang, and Aimin Zhou. 2024. "MD-TransUNet: An Image Segmentation Network for Car Front Face Design" Applied Sciences 14, no. 19: 8688. https://doi.org/10.3390/app14198688
APA StyleOuyang, J., Shi, H., Su, J., Zhang, S., & Zhou, A. (2024). MD-TransUNet: An Image Segmentation Network for Car Front Face Design. Applied Sciences, 14(19), 8688. https://doi.org/10.3390/app14198688