Electromagnetic Interference Shielding Analysis of Hybrid Buckypaper-Reinforced Polymer Matrix Composites: A Quantum Tunneling-Informed Equivalent Circuit Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrical Conductivity Characterization of CFRPs
2.1.1. Longitudinal Conductivity
2.1.2. Transverse Conductivity
2.2. Electrical Conductivity of BP
2.3. EMI Shielding Model
3. Results and Discussion
3.1. Longitudinal Electrical Conductivity
3.2. Transverse Electrical Conductivity
3.3. EMI Shielding of BP/CFRP Hybrid Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Fiber resistivity | |
Matrix resistivity | |
Vacuum permittivity | |
Relative permittivity of medium | |
Vacuum permeability | |
Relative permeability of medium | |
Refractive Index of matrix | |
Fiber resistance | |
Fiber length | |
Mean fiber radius | |
Fiber inductive reactance | |
Fiber inductance | |
Signal frequency | |
Average fiber separation | |
Longitudinal CFRP impedance | |
Number of fibers | |
Longitudinal AC conductivity | |
Reduced Planck’s constant | |
Electron mass | |
Barrier potential energy | |
E | Particle’s energy |
a | Barrier size |
Tunneling coefficient | |
Contact impedance | |
Contact resistance | |
Contact capacitance | |
T | Separation between neighboring fibers |
Contact capacitive reactance | |
Total fiber contact length | |
S | RVE length transverse to the fiber |
RVE length along the fiber | |
c | Speed of light |
Electron charge | |
Transverse AC conductivity | |
Absorption shielding effectiveness | |
Reflection shielding effectiveness | |
Total shielding effectiveness |
Appendix A
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Z.; Fu, J.; Liang, Z.; Ramakrishnan, K.R. Mechanical properties and structural health monitoring performance of carbon nanotube modified FRP composites: A review. Nanotechnol. Rev. 2021, 10, 1438–1468. [Google Scholar] [CrossRef]
- Yokozeki, T.; Iwahori, Y.; Ishiwata, S. Matrix cracking behaviors in carbon fiber/epoxy laminates filled with cup-stacked carbon nanotubes (CSCNTs). Compos. Part A Appl. Sci. Manuf. 2007, 38, 917–924. [Google Scholar] [CrossRef]
- Du, F.; Scogna, R.C.; Zhou, W.; Brand, S.; Fischer, J.E.; Winey, K.I. Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity. Macromolecules 2004, 37, 9048–9055. [Google Scholar] [CrossRef]
- El Sawi, I.; Olivier, P.A.; Demont, P.; Bougherara, H. Processing and electrical characterization of a unidirectional CFRP composite filled with double walled carbon nanotubes. Compos. Sci. Technol. 2012, 73, 19–26. [Google Scholar] [CrossRef]
- Xia, X.; Wang, Y.; Zhong, Z.; Weng, G.J. A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon 2017, 111, 221–230. [Google Scholar] [CrossRef]
- Mohan, L.; Kumar, P.N.; Karakkad, S.; Krishnan, S.T. Determination of electrical percolation threshold of carbon nanotube-based epoxy nanocomposites and its experimental validation. IET Sci. Meas. Technol. 2019, 13, 1299–1304. [Google Scholar] [CrossRef]
- Guadagno, L.; Vertuccio, L.; Naddeo, C.; Raimondo, M.; Barra, G.; De Nicola, F.; Volponi, R.; Lamberti, P.; Spinelli, G.; Tucci, V. Electrical Current Map and Bulk Conductivity of Carbon Fiber-Reinforced Nanocomposites. Polymers 2019, 11, 1865. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, P.-C.; Siddiqui, N.A.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, K.; Zhu, S.; Xu, H.; Cao, D.; Zhao, L.; Zhang, R.; Yin, W. Review on the Electrical Resistance/Conductivity of Carbon Fiber Reinforced Polymer. Appl. Sci. 2019, 9, 2390. [Google Scholar] [CrossRef]
- Gojny, F.H.; Wichmann, M.H.G.; Fielder, B.; Bauhofer, W.; Schulte, K. Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1525–1535. [Google Scholar] [CrossRef]
- Schulz, S.C.; Schlutter, J.; Bauhofer, W. Influence of Initial High Shearing on Electrical and Rheological Properties and Formation of Percolating Agglomerates for MWCNT/Epoxy Suspensions. Macromol. Mater. Eng. 2010, 295, 613–617. [Google Scholar] [CrossRef]
- Song, Y.S.; Youn, J.R. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005, 43, 1378–1385. [Google Scholar] [CrossRef]
- Datta, S.; Fard, M.Y.; Chattopadhyay, A. High-Speed Surfactant-Free Fabrication of Large Carbon Nanotube Membranes for Multifunctional Composites. J. Aerosp. Eng. 2015, 29, 04015060. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Z. Optimization of Buckypaper-enhanced Multifunctional Thermoplastic Composites. Sci. Rep. 2017, 7, 42. [Google Scholar] [CrossRef]
- Tripathi, K.; Hamza, M.H.; Chattopadhyay, A.; Henry, T.C.; Hall, A. Impact of buckypaper on the mechanical properties and failure modes of composites. In Proceedings of the American Society for Composites-Thirty-Eighth Technical Conference, Woburn, MA, USA, 18–20 September 2023. [Google Scholar]
- Munalli, D.; Dimitrakis, G.; Chronopoulos, D.; Greedy, S.; Long, A. Electromagnetic shielding effectiveness of carbon fibre reinforced composites. Compos. Part B Eng. 2019, 173, 106906. [Google Scholar] [CrossRef]
- Banerjee, P.; Schmidt, J.L. Electrical conductivity modeling and validation in unidirectional carbon fiber reinforced polymer composites. In Proceedings of the COMSOL Conference, Rotterdam, The Netherlands, 23–25 October 2013. [Google Scholar]
- Wasselynck, G.; Trichet, D.; Fouladgar, J. Determination of the Electrical Conductivity Tensor of a CFRP Composite Using a 3-D Percolation Model. IEEE Trans. Magn. 2013, 49, 1825–1828. [Google Scholar] [CrossRef]
- Wasselynck, G.; Trichet, D.; Ramdane, B.; Fouladgar, J. Microscopic and Macroscopic Electromagnetic and Thermal Modeling of Carbon Fiber Reinforced Polymer Composites. IEEE Trans. Magn. 2011, 47, 1114–1117. [Google Scholar] [CrossRef]
- Hirano, Y.; Yamane, T.; Todoroki, A. Through-thickness electric conductivity of toughened carbon-fibre-reinforced polymer laminates with resin-rich layers. Compos. Sci. Technol. 2016, 122, 67–72. [Google Scholar] [CrossRef]
- Zhang, R.; Bin, Y.; Chen, R.; Matsuo, M. Evaluation by tunneling effect for the temperature-dependent electric conductivity of polymer-carbon fiber composites with visco-elastic properties. Polym. J. 2013, 45, 1120–1134. [Google Scholar] [CrossRef]
- Morales, M.A.; Henry, T.C.; Salamanca-Riba, L.G. Model of electromagnetic interference shielding effectiveness for a multifunctional composite containing carbon-fiber-reinforced polymer and copper mesh layers. Carbon 2023, 212, 118179. [Google Scholar] [CrossRef]
- Mostafavi Yazdi, S.J.; Lisitski, A.; Pack, S.; Hiziroglu, H.R.; Baqersad, J. Analysis of Shielding Effectiveness against Electromagnetic Interference (EMI) for Metal-Coated Polymeric Materials. Polymers 2023, 15, 1911. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wang, D.; Kyosev, Y.; Kremenakova, D.; Militky, J. The novel approach of EMI shielding simulation for metal coated nonwoven textiles with optimized textile module. Polym. Test. 2022, 114, 107706. [Google Scholar] [CrossRef]
- Liu, Y.; Song, D.; Wu, C.; Leng, J. EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe. Compos. Part B Eng. 2014, 63, 34–40. [Google Scholar] [CrossRef]
- Karimi, P.; Ostoja-Starzewski, M.; Jasiuk, I. Experimental and computational study of shielding effectiveness of polycarbonate carbon nanocomposites. J. Appl. Phys. 2016, 120, 145103. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, M.-S. Assembly of Multi-Dimensional Microstructures of MXene towards Wearable Electromagnetic Attenuating Devices. Crystals 2023, 13, 1612. [Google Scholar] [CrossRef]
- Holloway, C.L.; Sarto, M.S.; Johansson, M. Analyzing carbon-fiber composite materials with equivalent-Layer models. IEEE Trans. Electromagn. Compat. 2005, 47, 833–844. [Google Scholar] [CrossRef]
- Available online: https://3937524.app.netsuite.com/core/media/media.nl?id=172313&c=3937524&h=dab869f57f81854c6a97&_xt=.pdf (accessed on 8 September 2024).
- Available online: https://www.huntsman.com/docs/Documents/MIRALON%20Sheet%20Technical%20Datasheet.pdf (accessed on 8 September 2024).
- Matsuo, S.; Sottos, N.R. Single carbon fiber transverse electrical resistivity measurement via the van der Pauw method. J. Appl. Phys. 2021, 130, 115105. [Google Scholar] [CrossRef]
- Maradei, F.; Caniggia, S. Appendix A: Formulae for partial inductance calculation. In Signal Integrity and Radiated Emission of High-Speed Digital Systems; Francescaromana, M., Caniggia, S., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 481–486. [Google Scholar]
- Kim, H.C.; See, S.K. Electrical properties of unidirectional carbon-epoxy composites in wide frequency band. J. Phys. D Appl. Phys. 1990, 23, 916. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Tian, X.; Chen, J.; Yao, X. Dynamic electrical characteristics of carbon fiber-reinforced polymer composite under low intensity lightning current impulse. Adv. Compos. Lett. 2020, 29, 2633366X20942775. [Google Scholar] [CrossRef]
- Galehdar, A.; Rowe, W.S.T.; Ghorbani, K.; Callus, P.J.; John, S.; Wang, C.H. The Effect of Ply Orientation on the Performance of Antennas in or on Carbon Fiber Composites. Prog. Electromagn. Res. 2011, 116, 123–136. [Google Scholar] [CrossRef]
- Rea, S.; Linton, D.; Orr, E.; McConnell, J. Electromagnetic shielding properties of carbon fibre composites in avionic systems. Microw. Rev. 2005, 29, 29–32. [Google Scholar]
- Mikinka, E.; Siwak, M. Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites—A topical review. J. Mater. Sci. Mater. Electron. 2021, 32, 24585–24643. [Google Scholar] [CrossRef]
- Guan, H.; Chung, D. Effect of the planar coil and linear arrangements of continuous carbon fiber tow on the electromagnetic interference shielding effectiveness, with comparison of carbon fibers with and without nickel coating. Carbon 2019, 152, 898–908. [Google Scholar] [CrossRef]
- Tripathi, K.; Morales, M.; Hamza, M.H.; Henry, T.C.; Hall, A.; Chattopadhyay, A. Electrical Characterization and Electromagnetic Interference Shielding Properties of Hybrid Buckypaper Reinforced Polymer Matrix Composites. In Proceedings of the ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference, Renton, WA, USA, 29 April–1 May 2024; ASME: New York, NY, USA, 2024; p. V001T01A006. [Google Scholar] [CrossRef]
DC Resistivity (Ω-m) | Relative Permittivity | Refractive Index n | Relative Permeability | |
---|---|---|---|---|
Fiber | Longitudinal: 1.5 × 10−5 | 1 | 1.6 | 1 |
Transverse: 9.3 × 10−5 | ||||
Epoxy | 108 | 3 | 1.55 | 1 |
BP | 1.3 × 10−5 | 1 | - | 1 |
Parameter (Unit) | Value |
---|---|
Fiber mean diameter () | 5.24 |
Fiber diameter standard deviation () | 0.295 |
Fiber volume fraction | 0.6 |
CFRP lamina thickness (mm) | 0.25 |
BP thickness () | 0.1 |
Parameter (Unit) | Value |
---|---|
Electron charge (C) | 1.6 × 10−19 |
Electron mass (kg) | 9.11 × 10−31 |
Permittivity of free space (F/m) | 8.854 × 10−12 |
Permeability of free space (H/m) | 4 × 10−7 |
Reduced Planck’s Constant (Js) | 1.05 × 10−34 |
Speed of light (m/s) | 3 × 108 |
Label | Configuration |
---|---|
Case 1 (BP Placement) | [90, 0] |
[BP, 90, 0] | |
[90, BP, 0] | |
[90, 0, BP] | |
Case 2 (Adjacent Ply) | [0, BP, 0] |
[45, BP, 0] | |
[90, BP, 0] | |
Case 3 (Standard Configuration) | [90, 0, ± 45, 0, 90]s |
[90, 0, BP, ± 45, 0, 90]s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, K.; Hamza, M.H.; Morales, M.A.; Henry, T.C.; Hall, A.; Chattopadhyay, A. Electromagnetic Interference Shielding Analysis of Hybrid Buckypaper-Reinforced Polymer Matrix Composites: A Quantum Tunneling-Informed Equivalent Circuit Approach. Appl. Sci. 2024, 14, 8960. https://doi.org/10.3390/app14198960
Tripathi K, Hamza MH, Morales MA, Henry TC, Hall A, Chattopadhyay A. Electromagnetic Interference Shielding Analysis of Hybrid Buckypaper-Reinforced Polymer Matrix Composites: A Quantum Tunneling-Informed Equivalent Circuit Approach. Applied Sciences. 2024; 14(19):8960. https://doi.org/10.3390/app14198960
Chicago/Turabian StyleTripathi, Kartik, Mohamed H. Hamza, Madeline A. Morales, Todd C. Henry, Asha Hall, and Aditi Chattopadhyay. 2024. "Electromagnetic Interference Shielding Analysis of Hybrid Buckypaper-Reinforced Polymer Matrix Composites: A Quantum Tunneling-Informed Equivalent Circuit Approach" Applied Sciences 14, no. 19: 8960. https://doi.org/10.3390/app14198960
APA StyleTripathi, K., Hamza, M. H., Morales, M. A., Henry, T. C., Hall, A., & Chattopadhyay, A. (2024). Electromagnetic Interference Shielding Analysis of Hybrid Buckypaper-Reinforced Polymer Matrix Composites: A Quantum Tunneling-Informed Equivalent Circuit Approach. Applied Sciences, 14(19), 8960. https://doi.org/10.3390/app14198960