Physical Vulnerability and Landslide Risk Assessment in Tegucigalpa City, Honduras
Abstract
:1. Introduction
1.1. Conceptual Framework
1.2. Research Background
1.3. Study Area
2. Materials and Methods
2.1. Landslide Hazard Estimation
2.2. Spatial Probability
2.3. Temporal Probability
2.4. Integration of Spatial and Temporal Probability
2.5. Vulnerability to Translational and Rotational Slides
2.6. Risk Estimation
3. Results
3.1. Spatial Probability
3.2. Temporal Probability
3.3. Vulnerability to Translational and Rotational Slides
3.4. Risk Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNDRR. The Disaster Risk Reduction (DRR) Glossary. 2017. Available online: https://www.undrr.org/drr-glossary/terminology (accessed on 27 July 2024.).
- Corominas, J.; Van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Crozier, M.; Glade, T. Landslide Hazard and Risk: Issues, Concepts and Approach. In Landslide Hazard and Risk, 1st ed.; Glade, T., Anderson, M., Crozier, M., Eds.; Wiley: Hoboken, NJ, USA, 2005; pp. 1–40. [Google Scholar]
- Papathoma-Köhle, M.; Kappes, M.; Keiler, M.; Glade, T. Physical vulnerability assessment for alpine hazards: State of the art and future needs. Nat. Hazards 2011, 58, 645–680. [Google Scholar] [CrossRef]
- Alexander, D. Vulnerability to Landslides. In Landslide Hazard and Risk, 1st ed.; Glade, T., Anderson, M., Crozier, M.J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005; pp. 175–198. [Google Scholar] [CrossRef]
- Bedford, T.; Cooke, R. What is uncertainty? In Probabilistic Risk Analysis: Foundations and Methods, 6th ed.; Cambridge University Press: Cambridge, UK, 2009; pp. 17–35. [Google Scholar]
- Mechler, R. Reviewing estimates of the economic efficiency of disaster risk management: Opportunities and limitations of using risk-based cost–benefit analysis. Nat. Hazards 2016, 81, 2121–2147. [Google Scholar] [CrossRef]
- Grossi, P.; Kunreuther, H.; Windeler, D. An introduction to catastrophe models and insurance. In Catastrophe Modeling: A New Approach to Managing Risk; Springer: New York, NY, USA, 2005; pp. 23–42. [Google Scholar]
- Michel-Kerjan, E.; Hochrainer-Stigler, S.; Kunreuther, H.; Linnerooth-Bayer, J.; Mechler, R.; Muir-Wood, R.; Ranger, N.; Vaziri, P.; Young, M. Catastrophe risk models for evaluating disaster risk reduction investments in developing countries. Risk Anal. 2013, 33, 984–999. [Google Scholar] [CrossRef]
- Yamin, L.E.; Hurtado, A.I.; Barbat, A.H.; Cardona, O.D. Seismic and wind vulnerability assessment for the GAR-13 global risk assessment. Int. J. Disaster Risk Reduct. 2014, 10, 452–460. [Google Scholar] [CrossRef]
- Galve, J.P.; Cevasco, A.; Brandolini, P.; Piacentini, D.; Azañón, J.M.; Notti, D.; Soldati, M. Cost-based analysis of mitigation measures for shallow-landslide risk reduction strategies. Eng. Geol. 2016, 213, 142–157. [Google Scholar] [CrossRef]
- Guillard-Goncalves, C.; Zêzere, J.L.; Pereira, S.; Garcia, R.A.C. Assessment of physical vulnerability of buildings and analysis of landslide risk at the municipal scale: Application to the Loures municipality, Portugal. Nat. Hazards Earth Syst. Sci. 2016, 16, 311–331. [Google Scholar] [CrossRef]
- Marín-Rodríguez, N.J.; Vega, J.; Zanabria, O.B.; González-Ruiz, J.D.; Botero, S. Towards an understanding of landslide risk assessment and its economic losses: A scientometric analysis. Landslides 2024, 21, 1865–1881. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Tyagi, A.; Kamal Tiwari, R.; James, N. A review on spatial, temporal and magnitude prediction of landslide hazard. J. Asian Earth Sci. X 2022, 7, 100099. [Google Scholar] [CrossRef]
- Felicísimo, Á.M.; Cuartero, A.; Remondo, J.; Quirós, E. Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: A comparative study. Landslides 2013, 10, 175–189. [Google Scholar] [CrossRef]
- Kornejady, A.; Ownegh, M.; Bahremand, A. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena 2017, 152, 144–162. [Google Scholar] [CrossRef]
- Ciurleo, M.; Cascini, L.; Calvello, M. A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Eng. Geol. 2017, 223, 71–81. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, C.X.; Song, C.Q.; Shen, S.; Ning, L.X. Visual analysis of the evolution and focus in landslide research field. J. Mt. Sci. 2019, 16, 991–1004. [Google Scholar] [CrossRef]
- BID. Tegucigalpa y Comayagüela: Capital Sostenible, Segura y Abierta al Público. 2015. Available online: https://issuu.com/ciudadesemergentesysostenibles/docs/plan_de_accion_-_tegucigalpa (accessed on 15 July 2016).
- Corporación Observatorio Sismológico del Suroccidente. (n.d.). DesInventar Database. Available online: https://online.desinventar.org/ (accessed on 26 April 2016).
- Harp, E.; Held, M.D.; Castañeda, M.R.; Mckenna, J.P.; Jibson, R.W. Landslide Hazard Map of Tegucigalpa, Honduras. US Geol. Surv. Open-File Rep. 2002, 219, 92002. [Google Scholar]
- Suárez, G.; Domínguez-Cuesta, M.J. Improving landslide susceptibility predictive power through colluvium mapping in Tegucigalpa, Honduras. Nat. Hazards 2021, 105, 47–66. [Google Scholar] [CrossRef]
- García-Urquía, E. Establishing rainfall frequency contour lines as thresholds for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005. Nat. Hazards 2016, 82, 2107–2132. [Google Scholar] [CrossRef]
- Rogers, R.D.; Mann, P.; Scott, R.W.; Patino, L. Cretaceous intra-arc rifting, sedimentation, and basin inversion in east-central Honduras. Spec. Pap. Geol. Soc. Am. 2007, 428, 89–128. [Google Scholar] [CrossRef]
- Ghosh, S.; Van Westen, C.J.; Carranza, E.J.M.; Jetten, V.G.; Cardinali, M.; Rossi, M.; Guzzetti, F. Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Eng. Geol. 2012, 128, 49–62. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Guzzetti, F.; Galli, M.; Reichenbach, P.; Ardizzone, F.; Cardinali, M. Landslide hazard assessment in the Collazzone area, Umbria, central Italy. Nat. Hazards Earth Syst. Sci. 2006, 6, 115–131. [Google Scholar] [CrossRef]
- Jaiswal, P.; Van Westen, C.J.; Jetten, V. Quantitative landslide hazard assessment along a transportation corridor in southern India. Eng. Geol. 2010, 116, 236–250. [Google Scholar] [CrossRef]
- Haneberg, W.C. PISA-m, Map-Based Probabilistic Infinite Slope Analysis, Version 1.0.1 User Manual; Haneberg Geoscience: Seattle, WA, USA, 2007; Issue March. [Google Scholar]
- Hidalgo, C.; Pacheco, A. Herramientas para análisis por confiabilidad en geotecnia: Aplicación Tools for reliability analysis in geotechnical engineering: Application. Rev. Ing. Univ. Medellín 2011, 10, 79–86. [Google Scholar]
- Suárez, G.; Domínguez-Cuesta, M.J. Identificación de zonas susceptibles a deslizamientos en Tegucigalpa, Honduras. Limitaciones del modelo del talud. Geogaceta 2021, 69, 51–54. Available online: https://sge.usal.es/archivos/geogacetas/geo69/Geo69_p_51_54.pdf (accessed on 15 January 2022). [CrossRef]
- Valenzuela, P.; Domínguez-Cuesta, M.J.; Mora García, M.A.; Jiménez-Sánchez, M. A spatio-temporal landslide inventory for the NW of Spain: BAPA database. Geomorphology 2017, 293, 11–23. [Google Scholar] [CrossRef]
- Harp, E.; Castaneda, M.; Held, M.D. Landslides Triggered by Hurricane Mitch in Tegucigalpa, Honduras; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2002.
- Zêzere, J.L.; Reis, E.; Garcia, R.; Oliveira, S.; Rodrigues, M.L.; Vieira, G.; Ferreira, A.B. Integration of spatial and temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat. Hazards Earth Syst. Sci. 2004, 4, 133–146. [Google Scholar] [CrossRef]
- Galli, M.; Guzzetti, F. Landslide vulnerability criteria: A case study from Umbria, central Italy. Environ. Manag. 2007, 40, 649–664. [Google Scholar] [CrossRef]
- García-Urquía, E.; Axelsson, K. Rainfall thresholds for the occurrence of urban landslides in Tegucigalpa, Honduras: An application of the critical rainfall intensity. Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 61–83. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, Ø.B. Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Nat. Hazards 2013, 66, 707–730. [Google Scholar] [CrossRef]
- Khan, Y.A.; Lateh, H.; Baten, M.A.; Kamil, A.A. Critical antecedent rainfall conditions for shallow landslides in Chittagong City of Bangladesh. Environ. Earth Sci. 2012, 67, 97–106. [Google Scholar] [CrossRef]
- Valenzuela, P.; Zêzere, J.L.; Domínguez-Cuesta, M.J.; Mora García, M.A. Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain). Landslides 2019, 16, 1285–1300. [Google Scholar] [CrossRef]
- Bonachea, J. Desarrollo, Aplicación y Validación de Procedimientos y Modelos Para la Evaluación de Amenazas, Vulnerabilidad y Riesgo Debidos a Procesos Geomorfológicos; Universidad de Cantabria: Santander, Spain, 2006; Available online: https://repositorio.unican.es/xmlui/handle/10902/1292 (accessed on 15 June 2018).
- Chow, V.T.; Maidment, D.; Mays, L. Hidrologic statistics. In Applied Hydrogeology; McGraw-Hill Book Co.: New York, NY, USA, 1988; pp. 350–371. [Google Scholar]
- Malhotra, N. Sampling: Final and Initial Sample Size Determination. In Marketing Research: An Applied Orientation, 6th ed.; Pearson Education: New York, NY, USA, 2010; pp. 336–370. [Google Scholar]
- Ciurena, R.; Schroter, D.; Glade, T. Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction. In, Approaches to Disaster Management—Examining the Implications of Hazards, Emergencies and Disasters; Tiefenbacher, J., Ed.; IntechOpen: London, UK, 2013; p. 424. [Google Scholar] [CrossRef]
- Cardona, O.D.; Ordaz, M.G.; Reinoso, E.; Yamin, L.E. Enfoque integral para la evaluación probabilista del riesgo (CAPRA): Iniciativa internacional para la efectividad de la gestión del riesgo de desastre. In Proceedings of the 4° Congreso Nacional de Ingeniería Sísmica: Libro de Resúmenes, Granada, Spain, 18–20 May 2011. [Google Scholar]
- Forbes, C.; Evans, M.; Hastings, N.; Peacock, B. Beta Distribution. In Statistical Distributions, 4th ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2011; pp. 55–62. [Google Scholar]
- Barbat, A.H.; Moya, F.Y.; Canas, J.A. Damage scenarios simulation for seismic risk assessment in urban zones. Earthq. Spectra 1996, 12, 371–394. [Google Scholar] [CrossRef]
- Jaiswal, K.; Bausch, D.; Rozelle, J.; Holub, J.; McGowan, S. Hazus® Estimated Annualized Earthquake Losses for the United States; Federal Emergency Management Agency: Washington, DC, USA, 2008.
- Reclamation/USACE. Event Trees. In Best Practices in Dam and Levee Safety Risk Analysis; Reclamation/USACE: Jacksonville, FL, USA, 2019; pp. 5–20. Available online: https://iwrlibrary.sec.usace.army.mil/resource/269491ec-bcc2-44c9-de98-dbd7703ef582 (accessed on 15 March 2018).
- FEMA. Multi-Hazard Loss Estimation Methodology. Earthquake Model. HAZUS®MH-2.1. Technical Manual; FEMA: Baltimore, MD, USA, 2011.
- FEMA. Multi-Hazard Loss Estimation Methodology. Flood Model. HAZUS®MH-2.1. Technical Manual; FEMA: Baltimore, MD, USA, 2011.
- Penning-Rowsell, E.; Johnson, C.; Tunstall, S.; Tapsell, S.; Morris, J.; Chatterton, J.; Green, C. The Benefits of Flood and Coastal Risk Management: A Handbook of Assessment Techniques; Middlesex University Press: London, UK, 2005. [Google Scholar]
- Quan Luna, B.; Blahut, J.; Camera, C.; van Westen, C.; Apuani, T.; Jetten, V.; Sterlacchini, S. Physically based dynamic run-out modelling for quantitative debris flow risk assessment: A case study in Tresenda, northern Italy. Environ. Earth Sci. 2014, 72, 645–661. [Google Scholar] [CrossRef]
- Hallegatte, S.; Vogt-Schilb, A.; Bangalore, M.; Julie, R. Unbreakable: Building the Resilience of the Poor in the Face of Natural Disasters; World Bank: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Velásquez, A. La Desigualdad Social en Honduras: Evolución y Respuesta Institucional. 2021. Available online: https://www.cepal.org/es/publicaciones/47642-la-desigualdad-social-honduras-evolucion-respuesta-institucional (accessed on 21 August 2024).
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/SREX_Full_Report-1.pdf (accessed on 21 August 2024).
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth-Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
Layer | σ | |
---|---|---|
Colluviums and residual soils | 0.37 | 0.26 |
Validated landslide inventory | 0.44 | 0.25 |
Colluvium of basalts, andesites, and rhyolites | 0.42 | 0.28 |
Residual soil from Valle de Ángeles group | 0.4 | 0.23 |
Colluviums and residual soils | 0.3 | 0.22 |
RP: (Years) | NLS | AD (pix) (Tai) | |
---|---|---|---|
125 | 29 | 42,664 | 0.109 |
6 | 20 | 29,423 | 0.075 |
4 | 13 | 19,125 | 0.049 |
2 | 9 | 13,240 | 0.034 |
1.3 | 3 | 4413 | 0.011 |
1 | 1 | 1471 | 0.004 |
House Type | σ | α | β | |
---|---|---|---|---|
Precarious brick housing | 0.53 | 0.43 | 0.18 | 0.16 |
Wooden housing | 0.47 | 0.38 | 0.35 | 0.40 |
Popular brick housing | 0.42 | 0.34 | 0.46 | 0.63 |
Block housing | 0.35 | 0.34 | 0.33 | 0.62 |
Neighborhood Type | Area (ha) | Exposed Houses 2020 | Exposed Population 2020 | Exposed Population 2020 (%) | Housing Area (103 m2) | m2 Value (USD) 1 | Exposed Value (Million USD) 1 | Exposed Value (%) |
---|---|---|---|---|---|---|---|---|
Residential | 43.7 | 1197 | 3755 | 2 | 305.8 | 1246.0 | 381 | 30 |
Middle class | 56.2 | 3170 | 11,638 | 7 | 337.4 | 940.5 | 317 | 25 |
Popular | 132.7 | 9431 | 39,316 | 24 | 929.1 | 357.5 | 332 | 26 |
Precarious | 606.6 | 24,072 | 109,566 | 67 | 4852.9 | 46.3 | 224 | 18 |
TOTAL | 839.3 | 37,870 | 164,275 | 100 | 6425 | 1255 | 100 |
Type of Neighborhood | E [L|l] (MUSD) | % EV |
---|---|---|
Residential | 137 | 36 |
Middle class | 139 | 44 |
Popular | 146 | 44 |
Precarious | 113 | 51 |
TOTAL | 535 | 43 |
LI 1 | LS 1 | VI 1 | LI 2 | LS 2 | P 2 | AAL 1 |
---|---|---|---|---|---|---|
0.78 | 2.1 | 1.3 | 1 | 0.77 | 0.23 | 0.23 |
2.1 | 6.6 | 3.7 | 0.77 | 0.5 | 0.27 | 1.01 |
6.6 | 9.6 | 7.9 | 0.5 | 0.25 | 0.25 | 1.99 |
9.6 | 14.6 | 11.8 | 0.25 | 0.16 | 0.08 | 0.99 |
14.6 | 21.3 | 17.6 | 0.16 | 0.008 | 0.16 | 2.79 |
21.3 | n/a | 21.3 | 0.008 | 0 | 0.008 | 0.17 |
TOTAL AAL 1 | 7.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez, G.; Domínguez-Cuesta, M.J. Physical Vulnerability and Landslide Risk Assessment in Tegucigalpa City, Honduras. Appl. Sci. 2024, 14, 9114. https://doi.org/10.3390/app14199114
Suárez G, Domínguez-Cuesta MJ. Physical Vulnerability and Landslide Risk Assessment in Tegucigalpa City, Honduras. Applied Sciences. 2024; 14(19):9114. https://doi.org/10.3390/app14199114
Chicago/Turabian StyleSuárez, Ginés, and María José Domínguez-Cuesta. 2024. "Physical Vulnerability and Landslide Risk Assessment in Tegucigalpa City, Honduras" Applied Sciences 14, no. 19: 9114. https://doi.org/10.3390/app14199114
APA StyleSuárez, G., & Domínguez-Cuesta, M. J. (2024). Physical Vulnerability and Landslide Risk Assessment in Tegucigalpa City, Honduras. Applied Sciences, 14(19), 9114. https://doi.org/10.3390/app14199114