Application of Time-Series Modeling in Forecasting the Doctorate-Level Science and Technology Workforce
Abstract
:1. Introduction
2. Proposed Methods
- Combines disparate data to estimate the ratio of the number of S&T PhD graduates to the general population. This is represented as follows:
- Conducts predictive modeling using exponential smoothing (single and double) and Prophet.
- Determines the best model based on MAPE, MASE, RMSE, and NRMSE metrics.
- The prediction and interpretation of South Korea’s S&T PhD workforce combined with future projected population data.
2.1. Data Collection and Analysis Environments
2.2. Analysis Methods
3. Results
3.1. Descriptive Statistics
3.2. Single Exponential Smoothing
3.3. Double Exponential Smoothing
3.4. Prophet Model
3.5. Comparison of Methods
3.6. Forecasting of Science and Technology Doctoral Graduates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, R.C.; Blanpied, W.A. Research universities: Core of the US science and technology system. Technol. Soc. 2008, 30, 30–48. [Google Scholar] [CrossRef]
- De, S. Intangible capital and growth in the “new economy”: Implications of a multi-sector endogenous growth model. Struct. Chang. Econ. Dyn. 2014, 28, 25–42. [Google Scholar] [CrossRef]
- Santos, J.M.; Horta, H.; Heitor, M. Too many PhDs? An invalid argument for countries developing their scientific and academic systems: The case of Portugal. Technol. Forecast. Soc. Chang. 2016, 113, 352–362. [Google Scholar] [CrossRef]
- Bonilla, K.; Salles-Filho, S.; Bin, A. Building science, technology, and research capacity in developing countries: Evidence from student mobility and international cooperation between Korea and Guatemala. STI Policy Rev. 2018, 9, 99–132. [Google Scholar]
- Jung, J. Domestic and overseas doctorates and their academic entry-level jobs in South Korea. Asian Educ. Dev. Stud. 2018, 7, 205–222. [Google Scholar] [CrossRef]
- Albert, J.R.G.; Tabunda, A.M.L.; David, C.P.C.; Cuenca, J.S.; Francisco, K.A.; Vizmanos, J.F.V.; Labina, C.S. Future S&T Human Resource Requirements in the Philippines: A Labor Market Analysis. Discussion Paper Series No. 2020–22. 2020. Available online: https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/pidsdps2022.pdf (accessed on 20 May 2024).
- Radosevic, S.; Auriol, L. Patterns of restructuring in research, development and innovation activities in central and eastern European countries: An analysis based on S&T indicators. Res. Policy 1999, 28, 351–376. [Google Scholar] [CrossRef]
- Basu, A.; Foland, P.; Holdridge, G.; Shelton, R.D. China’s rising leadership in science and technology: Quantitative and qualitative indicators. Scientometrics 2018, 117, 249–269. [Google Scholar] [CrossRef]
- Lee, H.-F.; Miozzo, M.; Laredo, P. Career patterns and competences of PhDs in science and engineering in the knowledge economy: The case of graduates from a UK research-based university. Res. Policy 2010, 39, 869–881. [Google Scholar] [CrossRef]
- Bøgelund, P.; de Graaff, E. The road to become a legitimate scholar: A case study of international PhD students in science and engineering. Int. J. Doct. Stud. 2015, 10, 519–533. [Google Scholar] [CrossRef]
- Barge-Gil, A.; D’Este, P.; Herrera, L. PhD trained employees and firms’ transitions to upstream R&D activities. Ind. Innov. 2021, 28, 424–455. [Google Scholar] [CrossRef]
- Gould, J. How to build a better PhD. Nature 2015, 528, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Shmatko, N.; Katchanov, Y.; Volkova, G. The value of PhD in the changing world of work: Traditional and alternative research careers. Technol. Forecasting Soc. Chang. 2020, 152, 119907. [Google Scholar] [CrossRef]
- Butz, W.P.; Bloom, G.A.; Gross, M.E.; Kelly, T.K.; Kofner, A.; Rippen, H.E. Is There a Shortage of Scientists and Engineers? How Would We Know? IP-241-OSTP; Rand Corporation: Santa Monica, CA, USA, 2003. [Google Scholar]
- Suzdalova, M.; Politsinskaya, E.; Sushko, A. About the problem of professional personnel shortage in mechanical engineering industry and ways of solving. Procedia Soc. Behav. Sci. 2015, 206, 394–398. [Google Scholar] [CrossRef]
- Zweig, D.; Kang, S. America Challenges China’s National Talent Programs. Available online: https://www.jstor.org/stable/resrep24782 (accessed on 20 May 2024).
- Athey, S. Beyond prediction: Using big data for policy problems. Science 2017, 355, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Safarishahrbijari, A. Workforce forecasting models: A systematic review. J. Forecast. 2018, 37, 739–753. [Google Scholar] [CrossRef]
- Shapiro, M.A.; So, M.; Woo Park, H. Quantifying the national innovation system: Inter-regional collaboration networks in South Korea. Technol. Anal. Strateg. Manag. 2010, 22, 845–857. [Google Scholar] [CrossRef]
- BAI. Audit on the Demographic Crisis V. 2022. Available online: https://www.bai.go.kr/bai/result/branch/detail?srno=2762 (accessed on 20 May 2024). (In Korean).
- Landry, M.D.; Hack, L.M.; Coulson, E.; Freburger, J.; Johnson, M.P.; Katz, R.; Kerwin, J.; Smith, M.H.; Wessman, H.C.B.; Venskus, D.G.; et al. Workforce projections 2010–2020: Annual supply and demand forecasting models for physical therapists across the United States. Phys. Ther. 2016, 96, 71–80. [Google Scholar] [CrossRef]
- Stewart, R.; Dayal, H.; Langer, L.; van Rooyen, C. Transforming evidence for policy: Do we have the evidence generation house in order? Humanit. Soc. Sci. Commun. 2022, 9, 116. [Google Scholar] [CrossRef]
- Maier, T.; Afentakis, A. Forecasting supply and demand in nursing professions: Impacts of occupational flexibility and employment structure in Germany. Hum. Resour. Health 2013, 11, 24. [Google Scholar] [CrossRef]
- Fuchs, J.; Söhnlein, D.; Weber, B.; Weber, E. Stochastic forecasting of labor supply and population: An integrated model. Popul. Res. Policy Rev. 2018, 37, 33–58. [Google Scholar] [CrossRef]
- Moniz, A.B. Scenario-building methods as a tool for policy analysis. In Innovative Comparative Methods for Policy Analysis: Beyond the Quantitative-Qualitative Divide; Springer: Boston, MA, USA, 2006; pp. 185–209. [Google Scholar]
- Gustriansyah, R.; Alie, J.; Suhandi, N. Modeling the number of unemployed in South Sumatra province using the exponential smoothing methods. Qual. Quant. 2023, 57, 1725–1737. [Google Scholar] [CrossRef] [PubMed]
- Dumičić, K.; Čeh Časni, A.; Žmuk, B. Forecasting unemployment rate in selected European countries using smoothing methods. World Acad. Sci. Eng. Technol. Int. J. Soc. Educ. Econ. Manag. Eng. 2015, 9, 867–872. [Google Scholar]
- Syafwan, H.; Syafwan, M.; Syafwan, E.; Hadi, A.F.; Putri, P. Forecasting unemployment in north Sumatra using double exponential smoothing method. J. Phys. Conf. Ser. 2021, 1783, 012008. [Google Scholar] [CrossRef]
- Pontoh, R.S.; Zahroh, S.; Nurahman, H.R.; Aprillion, R.I.; Ramdani, A.; Akmal, D.I. Applied of feed-forward neural network and Facebook prophet model for train passengers forecasting. J. Phys. Conf. Ser. 2021, 1776, 012057. [Google Scholar] [CrossRef]
- KOSIS. Projected Population. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA001&vw_cd=MT_ETITLE&list_id=A41_10&scrId=&language=en&seqNo=&lang_mode=en&obj_var_id=&itm_id=&conn_path=MT_ETITLE&path=%252Feng%252FstatisticsList%252FstatisticsListIndex.do (accessed on 14 December 2023).
- KEDI. Statistical Yearbook of Education. 2022. Available online: https://kess.kedi.re.kr/eng/publ/view?survSeq=2022&publSeq=2&menuSeq=0&itemCode=02&language=en (accessed on 20 May 2024).
- Voineagu, V.; Pisica, S.; Caragea, N. Forecasting monthly unemployment by econometric smoothing techniques. J. Econ. Comput. Econ. Cybern. Stud. Res. 2012, 46, 255–267. [Google Scholar]
- Brown, R.G. Statistical Forecasting for Inventory Control; McGraw-Hill: New York, NY, USA, 1959; pp. 443–473. [Google Scholar]
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Forecasting Functions for Time Series and Linear Models, R Package Version 6; 2015. Available online: https://pkg.robjhyndman.com/forecast/ (accessed on 15 June 2024).
- Holt, C.C. Forecasting trends and seasonals by exponentially weighted moving averages. ONR Memo. 1957, 52, 5–10. [Google Scholar]
- Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20, 5–10. [Google Scholar] [CrossRef]
- Taylor, S.J.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- KRIVET. Survey of Earned Doctorate. 2021. Available online: https://www.krivet.re.kr/kor/sub.do?pageIndex=&menuSn=12&pstNo=E120220010&orderType=date&dataSeType=all&fileType=full&searchYear=&searchType=all&searchText=%EB%B0%95%EC%82%AC%EC%A1%B0%EC%82%AC (accessed on 20 May 2024). (In Korean).
- Serrano, A.L.M.; Rodrigues, G.A.P.; Martins, P.H.S.; Saiki, G.M.; Filho, G.P.R.; Gonçalves, V.P.; Albuquerque, R.O. Statistical comparison of time series models for forecasting Brazilian monthly energy demand using economic, industrial, and climatic exogenous variables. Appl. Sci. 2024, 14, 5846. [Google Scholar] [CrossRef]
Year | PhD Graduate | Population Estimation | Ratio |
---|---|---|---|
2001 | 2804 | 8,556,683 | 0.033% |
2002 | 3095 | 8,485,909 | 0.036% |
2003 | 3183 | 8,414,442 | 0.038% |
2004 | 3516 | 8,303,905 | 0.042% |
2005 | 3669 | 8,204,263 | 0.045% |
2006 | 3814 | 8,153,407 | 0.047% |
2007 | 3619 | 8,097,282 | 0.045% |
2008 | 3670 | 8,011,074 | 0.046% |
2009 | 3815 | 7,857,528 | 0.049% |
2010 | 4138 | 7,711,889 | 0.054% |
2011 | 5092 | 7,632,229 | 0.067% |
2012 | 5292 | 7,523,552 | 0.070% |
2013 | 5414 | 7,401,510 | 0.073% |
2014 | 5523 | 7,304,584 | 0.076% |
2015 | 5614 | 7,141,056 | 0.079% |
2016 | 5978 | 6,968,066 | 0.086% |
2017 | 6177 | 6,859,703 | 0.090% |
2018 | 6351 | 6,853,679 | 0.093% |
2019 | 6713 | 6,894,238 | 0.097% |
2020 | 7263 | 6,953,345 | 0.104% |
SES | DES | Prophet | |
---|---|---|---|
MAPE | 5.979 | 3.402 | 3.463 |
MASE | 0.950 | 0.512 | 0.470 |
RMSE | 4.693 × 10−5 | 3.211 × 10−5 | 2.394 × 10−5 |
NRMSEminmax | 0.066 | 0.045 | 0.033 |
Year | Population Estimate (Predicted) | Ratio (Predicted) | Number of Doctoral Graduates (Predicted) |
---|---|---|---|
2021 | 6,981,653 | 0.107% | 7462 |
2022 | 7,019,218 | 0.111% | 7800 |
2023 | 7,119,257 | 0.116% | 8255 |
2024 | 7,149,410 | 0.121% | 8676 |
2025 | 7,146,556 | 0.125% | 8916 |
2026 | 7,110,027 | 0.129% | 9172 |
2027 | 6,932,072 | 0.134% | 9277 |
2028 | 6,716,604 | 0.139% | 9351 |
2029 | 6,511,059 | 0.143% | 9287 |
2030 | 6,275,989 | 0.147% | 9218 |
2031 | 6,026,943 | 0.152% | 9143 |
2032 | 5,817,110 | 0.157% | 9138 |
2033 | 5,648,775 | 0.161% | 9066 |
2034 | 5,480,099 | 0.165% | 9028 |
2035 | 5,296,199 | 0.170% | 8981 |
2036 | 5,172,281 | 0.175% | 9050 |
2037 | 5,123,004 | 0.178% | 9138 |
2038 | 5,095,903 | 0.183% | 9306 |
2039 | 5,043,637 | 0.187% | 9454 |
2040 | 5,036,726 | 0.193% | 9713 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.-Y.; Choe, H. Application of Time-Series Modeling in Forecasting the Doctorate-Level Science and Technology Workforce. Appl. Sci. 2024, 14, 9135. https://doi.org/10.3390/app14199135
Yoon H-Y, Choe H. Application of Time-Series Modeling in Forecasting the Doctorate-Level Science and Technology Workforce. Applied Sciences. 2024; 14(19):9135. https://doi.org/10.3390/app14199135
Chicago/Turabian StyleYoon, Ho-Yeol, and Hochull Choe. 2024. "Application of Time-Series Modeling in Forecasting the Doctorate-Level Science and Technology Workforce" Applied Sciences 14, no. 19: 9135. https://doi.org/10.3390/app14199135
APA StyleYoon, H. -Y., & Choe, H. (2024). Application of Time-Series Modeling in Forecasting the Doctorate-Level Science and Technology Workforce. Applied Sciences, 14(19), 9135. https://doi.org/10.3390/app14199135