Development of a Composite Filament Based on Polypropylene and Garlic Husk Particles for 3D Printing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Filament Preparation
2.3. 3D-Printed Composite Characterization
3. Results
3.1. Results of the DSC Characterization
3.2. Results of TGA Characterization
3.3. Results of DMA Characterization
3.4. Results of XRD Characterization
4. Conclusions
- -
- It is possible to obtain composite PP–GHP filaments through extrusion and use a 3D printing process to obtain probes with interesting properties in comparison with those of pristine PP.
- -
- The DSC results showed that the degree of crystallinity increased for PP–GHP composites compared with those of pristine PP. There was a higher Xc value for the 3D-printed PP–3GHP composites, and an increase in the content of GHPs generated a decrease in Xc.
- -
- The DTG curves showed that the thermal stability was affected by the addition of GHPs, and it was higher for the 3D-printed PP–3GHP composites.
- -
- The DMA results indicated that the storage modulus decreased with the addition of GHPs to PP, indicating that the stiffness decreased, and the Tan δ curve helped demonstrate that the 3D-printed composites had a more complex structure because the peak width increased for the 3D-printed composites in comparison with that of the 3D-printed pristine PP. This was related to molecular relaxations in the 3D composites that were not present in PP.
- -
- The XRD results corroborated the presence of the monoclinic α phase of PP and the β-hexagonal phase, and there was a slight displacement of the signals of the PP filament to lower angles on the 2θ scale when GHPs are added to PP, which was related to changes in the structure of the 3D-printed composites.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zarna, C.; Opedal, M.T.; Echtermeyer, A.T.; Chinga-Carrasco, G. Reinforcement ability of lignocellulosic components in biocomposites and their 3D printed applications–a review. Compos. Part C Open Access 2021, 6, 100171. [Google Scholar] [CrossRef]
- Ji, A.; Zhang, S.; Bhagia, S.; Yoo, C.G.; Ragauskas, A.J. 3D printing of biomass-derived composites: Application and characterization approaches. RSC Adv. 2020, 10, 21698–21723. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, R.; Chohan, J.S. Polymer matrix composites in 3D printing: A state of art review. Mater. Today Proc. 2020, 33, 1562–1567. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Wen, W.; Wang, K.; Peng, Y.; Ahzi, S.; Chinesta, F. Tailoring interfacial properties of 3D-printed continuous natural fiber reinforced polypropylene composites through parameter optimization using machine learning methods. Mater. Today Commun. 2022, 32, 103985. [Google Scholar] [CrossRef]
- Röhl, V.; Müssig, J. Wool fiber-reinforced thermoplastic polymers for injection molding and 3D-printing. In Wool Fiber Reinforced Polymer Composites; Woodhead Publishing: Sawston, UK, 2022; pp. 351–386. [Google Scholar]
- Gama, N.; Magina, S.; Barros-Timmons, A.; Ferreira, A. Enhanced compatibility between coconut fibers/PP via chemical modification for 3D printing. Prog. Addit. Manuf. 2022, 7, 213–223. [Google Scholar] [CrossRef]
- Bi, X.; Huang, R. 3D printing of natural fiber and composites: A state-of-the-art review. Mater. Des. 2022, 222, 111065. [Google Scholar] [CrossRef]
- Le Duigou, A.; Correa, D.; Ueda, M.; Matsuzaki, R.; Castro, M. A review of 3D and 4D printing of natural fibre biocomposites. Mater. Des. 2020, 194, 108911. [Google Scholar] [CrossRef]
- Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, J.L.; Pearce, J.M. Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics 2013, 23, 713–726. [Google Scholar] [CrossRef]
- Kreiger, M.; Pearce, J.M. Environmental Impacts of Distributed Manufacturing from 3-DPrinting of Polymer Components and Products, in Symposium D/G Materials for Sustainable Development—Challenges and Opportunities. MRS Online Proc. Libr. 2013, 1492, 85–90. [Google Scholar] [CrossRef]
- Decuir, F.; Phelan, K.; Hollins, B.C. Mechanical strength of 3-D printed filaments. In Proceedings of the 2016 32nd Southern Biomedical Engineering Conference (SBEC), Shreveport, LA, USA, 11–13 March 2016; pp. 47–48. [Google Scholar]
- Guvendiren, M.; Molde, J.; Soares, R.M.; Kohn, J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng. 2016, 2, 1679–1693. [Google Scholar] [CrossRef] [PubMed]
- Golra, O.A.; Tariq, J.; Ehsan, N.; Mirza, E. Strategy for introducing 3D fiber reinforced composites weaving technology. Procedia Technol. 2012, 1, 211–216. [Google Scholar] [CrossRef]
- Valino, A.D.; Dizon, J.R.C.; Espera Jr, A.H.; Chen, Q.; Messman, J.; Advincula, R.C. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Poly Sci. 2019, 98, 101162. [Google Scholar] [CrossRef]
- Hufenbach, W.; Böhm, R.; Thieme, M.; Winkler, A.; Mäder, E.; Rausch, J.; Schade, M. Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications. Mater. Des. 2011, 32, 1468–1476. [Google Scholar] [CrossRef]
- Kristiawan, R.B.; Rusdyanto, B.; Imaduddin, F.; Ariawan, D. Glass powder additive on recycled polypropylene filaments: A sustainable material in 3D printing. Polymers 2021, 14, 5. [Google Scholar] [CrossRef]
- Kong, X.; Luo, J.; Luo, Q.; Li, Q.; Sun, G. Experimental study on interface failure behavior of 3D printed continuous fiber reinforced composites. Addit. Manuf. 2022, 59, 103077. [Google Scholar] [CrossRef]
- Morales, M.A.; Atencio Martinez, C.L.; Maranon, A.; Hernandez, C.; Michaud, V.; Porras, A. Development and characterization of rice husk and recycled polypropylene composite filaments for 3D printing. Polymers 2021, 13, 1067. [Google Scholar] [CrossRef]
- Morales, M.A.; Maranon, A.; Hernandez, C.; Porras, A. Development and characterization of a 3D printed cocoa bean shell filled recycled polypropylene for sustainable composites. Polymers 2021, 13, 3162. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R. On Preparation of CaCO3 Reinforced Polypropylene Composite With 3D Printing for Biomedical Application. Encycl. Mater. Plast. Polym. 2022, 1, 378–385. [Google Scholar]
- Tian, X.; Liu, T.; Yang, C.; Wang, Q.; Li, D. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos. Part A Appl. Sci. Manufact. 2016, 88, 198–205. [Google Scholar] [CrossRef]
- Long, H.; Wu, Z.; Dong, Q.; Shen, Y.; Zhou, W.; Luo, Y.; Zhang, C.; Dong, X. Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing. Polym. Eng. Sci. 2019, 59 (Suppl. S2), E247–E260. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, R.; Singh, M.; Preet, P. On compressive and morphological features of 3D printed almond skin powder reinforced PLA matrix. Mater. Res. Express 2020, 7, 025311. [Google Scholar] [CrossRef]
- Ashori, A.; Nourbakhsh, A. Bio-based composites from waste agricultural residues. Waste Manag. 2010, 30, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.K.; Arancibia, F.; Gutiérrez, C. Adsorption of copper onto agriculture waste materials. J. Hazard. Mater. 2010, 180, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Varela, J.D.; Chanona-Pérez, J.J.; Benavides, H.A.C.; Sodi, F.C.; Vicente-Flores, M. Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydr. Polym. 2021, 255, 117347. [Google Scholar] [CrossRef] [PubMed]
- Kallel, F.; Bettaieb, F.; Khiari, R.; García, A.; Bras, J.; Chaabouni, S.E. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind. Crop. Prod. 2016, 87, 287–296. [Google Scholar] [CrossRef]
- Chen, X.; Yin, L.; Zhou, H.; Liu, J.; Li, X.; Ai, X.; Huang, K. Efficient removal of lead from washing effluent of lead-contaminated soil with garlic peel. Chem. Res. Chin. Univ. 2018, 34, 1020–1027. [Google Scholar] [CrossRef]
- Hawal, L.; Al-Sulttani, A.O.H.; Kariem, N.O. Chromium elimination from contaminated soil by electro-kinetic remediation, using garlic peels powder. J. Ecol. Eng. 2021, 22, 252–259. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Tao, Y.; Yu, Y.; Jiang, H.; Lian, H. Comparative study of adsorption of Pb (II) on native garlic peel and mercerized garlic peel. Env. Sci. Pollut. Res. 2014, 21, 2054–2063. [Google Scholar] [CrossRef]
- Villalobos-Neri, E.E.; Macchlesh Del Pino-Perez, L.A.; Velasco-Ocejo, H.A.; Rivera-Armenta, J.L.; Espindola-Flores, A.C. Preparation and Evaluation of Thermal Properties of Composites Based on Polypropylene Reinforced with Garlic Husk Particles (GHP). J. Nat. Fibers 2023, 20, 2145409. [Google Scholar] [CrossRef]
- Flores-Hernández, C.G.; López-Barroso, J.; Salazar-Cruz, B.A.; Saucedo-Rivalcoba, V.; Almendarez-Camarillo, A.; Rivera-Armenta, J.L. Evaluation of Starch–Garlic Husk Polymeric Composites through Mechanical, Thermal, and Thermo-Mechanical Tests. Polymers 2024, 16, 289. [Google Scholar] [CrossRef] [PubMed]
- ASTM-D1238; Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. American Society for Testing and Materials: West Conshohocken, PA, USA, 2023.
- ASTM D792A; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- Xanthos, M. (Ed.) Functional Fillers for Plastics; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Bazan, P.; Salasińska, K.; Kuciel, S. Flame retardant polypropylene reinforced with natural additives. Ind. Crop. Prod. 2021, 164, 113356. [Google Scholar] [CrossRef]
- Tan, Y.A.; Chan, M.Y.; Koay, S.C.; Ong, T.K. 3D polymer composite filament development from post-consumer polypropylene and disposable chopstick fillers. J. Vinyl Addit. Tech. 2023, 29, 909–922. [Google Scholar] [CrossRef]
- Hristov, V.; Vasileva, S. Dynamic mechanical and thermal properties of modified poly (propylene) wood fiber composites. Macromol. Mater. Eng. 2003, 288, 798–806. [Google Scholar] [CrossRef]
- Tajvidi, M.; Falk, R.H.; Hermanson, J.C. Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. J. Appl. Polym. Sci. 2006, 101, 4341–4349. [Google Scholar] [CrossRef]
- Amash, A.; Zugenmaier, P. Thermal and dynamic mechanical investigations on fiber-reinforced polypropylene composites. J. Appl. Polym. Sci. 1997, 63, 1143–1154. [Google Scholar] [CrossRef]
- Wang, S.; Ajji, A.; Guo, S.; Xiong, C. Preparation of microporous polypropylene/titanium dioxide composite membranes with enhanced electrolyte uptake capability via melt extruding and stretching. Polymers 2017, 9, 110. [Google Scholar] [CrossRef]
- Chrissopoulou, K.; Anastasiadis, S.H. Polyolefin/layered silicate nanocomposites with functional compatibilizers. Eur. Polym. J. 2011, 47, 600–613. [Google Scholar] [CrossRef]
- Niu, P.; Liu, B.; Wei, X.; Wang, X.; Yang, J. Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites. J. Reinf. Plast. Compos. 2011, 30, 36–44. [Google Scholar]
- Klapiszewski, Ł.; Grząbka-Zasadzińska, A.; Borysiak, S.; Jesionowski, T. Preparation and characterization of polypropylene composites reinforced by functional ZnO/lignin hybrid materials. Polym. Test. 2019, 79, 106058. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; He, S.; Yan, Y.; Zhang, J.; Dong, J. Efficient approach to produce functional polypropylene via solvent assisted solid-phase free radical grafting of multi-monomers. Appl. Petrochem. Res. 2021, 11, 99–111. [Google Scholar] [CrossRef]
Composite Filament | GHP Content [phr] | Code |
---|---|---|
PP | 0 | PP |
PP 1 phr GHP | 1 | PP-1 GHP |
PP 3 phr GHP | 3 | PP-3 GHP |
PP 5 phr GHP | 5 | PP-5 GHP |
Composite Filament | ΔHc [J/g] | Tc [°C] | ΔHm [J/g] | Tm [°C] | Xc [%] |
---|---|---|---|---|---|
PP | 92.785 | 115 | 64.109 | 170 | 30.97 |
PP-1 GHP | 91.109 | 112 | 68.631 | 162 | 33.15 |
PP-3 GHP | 100.105 | 113 | 79.47 | 166 | 38.39 |
PP-5 GHP | 90.573 | 114 | 65.56 | 166 | 31.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Hernández, C.G.; López-Barroso, J.; Ramos-Galván, C.E.; Salazar-Cruz, B.A.; Chávez-Cinco, M.Y.; Rivera-Armenta, J.L. Development of a Composite Filament Based on Polypropylene and Garlic Husk Particles for 3D Printing Applications. Appl. Sci. 2024, 14, 9139. https://doi.org/10.3390/app14199139
Flores-Hernández CG, López-Barroso J, Ramos-Galván CE, Salazar-Cruz BA, Chávez-Cinco MY, Rivera-Armenta JL. Development of a Composite Filament Based on Polypropylene and Garlic Husk Particles for 3D Printing Applications. Applied Sciences. 2024; 14(19):9139. https://doi.org/10.3390/app14199139
Chicago/Turabian StyleFlores-Hernández, Cynthia Graciela, Juventino López-Barroso, Claudia Esmeralda Ramos-Galván, Beatriz Adriana Salazar-Cruz, María Yolanda Chávez-Cinco, and José Luis Rivera-Armenta. 2024. "Development of a Composite Filament Based on Polypropylene and Garlic Husk Particles for 3D Printing Applications" Applied Sciences 14, no. 19: 9139. https://doi.org/10.3390/app14199139
APA StyleFlores-Hernández, C. G., López-Barroso, J., Ramos-Galván, C. E., Salazar-Cruz, B. A., Chávez-Cinco, M. Y., & Rivera-Armenta, J. L. (2024). Development of a Composite Filament Based on Polypropylene and Garlic Husk Particles for 3D Printing Applications. Applied Sciences, 14(19), 9139. https://doi.org/10.3390/app14199139