Review of EEG-Based Biometrics in 5G-IoT: Current Trends and Future Prospects
Abstract
:1. Introduction
2. Case Study: Digitizing Human Emotions
2.1. Progress in EEG-Based Emotion Recognition
2.2. EEG Databases for Emotion Recognition
3. Signal Morphology
4. Artifacts in the EEG
5. Signal Acquisition Approaches
5.1. Electrical Geodesic Sensors
5.2. Cup Electrodes
5.3. Dry Electrodes
5.4. Inductive Sensors
5.5. Ultrasound Sensors
6. EEG Signal Pre-Processing and Feature Extraction
6.1. EEG Signal Pre-Processing
6.1.1. EEG Signal Filtering
6.1.2. EEG Signals Segmentation
6.1.3. EEG Channels Selection
6.2. EEG Signals Feature Extraction
- Mean:
- Standard Deviation:
- Range:
- Skewness:
- Kurtosis:
- Hjorth parameter-activity:
- Hjorth parameter-mobility:
- Hjorth parameter-complexity:
- Power spectral density:
- Power:
- Power Ratio:
- Wavelet Energy:
- Wavelet Entropy:
6.3. EEG Signals Classification
6.3.1. Methodologies in EEG Signal Classification
6.3.2. Applications in Medical Diagnoses and Brain–Computer Interfaces (BCIs)
6.3.3. Challenges in EEG Signal Classification
6.3.4. Future Directions in EEG Classification Research
7. Deploying EEG within IoT 5G Environment
7.1. EEG Sensing Network
7.2. IoT Cloud
7.2.1. Mobile and Edge Computing Layer
7.2.2. Storage Layer
7.2.3. Application Layer
7.2.4. Intelligence Layer
7.2.5. Connectivity and Integration Layer
7.2.6. Security and Authentication Layer
7.3. Graphical User Interface (GUI)
8. 5G IoT Architecture and Infrastructure
8.1. 5G Architecture
8.2. 5G Infrastructure
9. Challenges and Opportunities of Wearable and Seamlessly Integrated Devices
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
EEG | electroencephalography |
BCI | brain–computer interfacing |
LANs | local area networks |
IP | internet protocol |
fMRI | functional magnetic resonance imaging |
SVM | support vector machine |
HA-HV | high arousal–high valence |
HA-LV | high arousal–low valence |
SAM | self-assessment Manikin |
HR | heart rate |
GSR | galvanic skin response |
V | microvolts |
PCA | principal component analysis |
APIs | application programming interfaces |
EDI | electronic data interchange |
FTP | file transfer protocol |
RAN | radio access network |
NG-RAN | new-generation radio access network |
ng-eNBs | next-generation evolved node B |
gNBs | gigabit network base station |
ANS | autonomic nervous system |
References
- Samie, F.; Bauer, L.; Henkel, J. IoT technologies for embedded computing: A survey. In Proceedings of the 2016 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Pittsburgh, PA, USA, 2–7 October 2016; pp. 1–10. [Google Scholar]
- Irmak, E.; Bozdal, M. Internet of Things (IoT): The Most Up-To-Date Challenges, Architectures, Emerging Trends and Potential Opportunities. Int. J. Comput. Appl. 2018, 179, 20–27. [Google Scholar] [CrossRef]
- Mylonas, G.; Amaxilatis, D.; Chatzigiannakis, I. Understanding the Effect of the COVID-19 Pandemic on the Usage of School Buildings in Greece Using an IoT Data-Driven Analysis. In Proceedings of the 2021 IEEE International Conference on Smart Internet of Things (SmartIoT), IEEE, Jeju, Republic of Korea, 13–15 August 2021; pp. 365–370. [Google Scholar] [CrossRef]
- IMT. Traffic Estimates for the Years 2020 to 2030; ITU: Geneva, Switzerland, 2015; Report ITU 2370. [Google Scholar]
- Fettweis, G.P. 5G and the future of IoT. In Proceedings of the ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference, Lausanne, Switzerland, 12–15 September 2016; pp. 21–24. [Google Scholar] [CrossRef]
- Gohil, A.; Modi, H.; Patel, S.K. 5G technology of mobile communication: A survey. In Proceedings of the 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), Vallabh Vidyanagar, India, 1–2 March 2013; pp. 288–292. [Google Scholar] [CrossRef]
- Morocho Cayamcela, M.E.; Lim, W. Artificial Intelligence in 5G Technology: A Survey. In Proceedings of the 2018 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 860–865. [Google Scholar] [CrossRef]
- Idrees, S.K.; Idrees, A.K. New fog computing enabled lossless EEG data compression scheme in IoT networks. J. Ambient Intell. Humaniz. Comput. 2022, 13, 3257–3270. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, R.A.; Vasilakos, A.V. Brain computer interface: Control signals review. Neurocomputing 2017, 223, 26–44. [Google Scholar] [CrossRef]
- Singh, A.; Lal, S.; Guesgen, H.W. Motor Imagery Classification Based on Subject to Subject Transfer in Riemannian Manifold. In Proceedings of the 2019 7th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 18–20 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Jeon, H.; Ah Shin, D. Experimental Set Up of P300 Based Brain Computer Interface Using a Bioamplifier and BCI2000 System for Patients with Spinal Cord Injury. Korean J. Spine 2015, 12, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Selvathi, D.; Meera, V.K. Realization of epileptic seizure detection in EEG signal using wavelet transform and SVM classifier. In Proceedings of the 2017 International Conference on Signal Processing and Communication (ICSPC), Coimbatore, India, 28–29 July 2017; pp. 18–22. [Google Scholar] [CrossRef]
- Aljalal, M.; Aldosari, S.A.; AlSharabi, K.; Abdurraqeeb, A.M.; Alturki, F.A. Parkinson’s Disease Detection from Resting-State EEG Signals Using Common Spatial Pattern, Entropy, and Machine Learning Techniques. Diagnostics 2022, 12, 1033. [Google Scholar] [CrossRef] [PubMed]
- Geniş, Y.; Akman Aydin, E. Diagnosis of Epilepsy Disease with Deep Learning Methods Using EEG Signals. In Proceedings of the 2022 30th Signal Processing and Communications Applications Conference (SIU), Safranbolu, Turkey, 15–18 May 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Puri, D.; Nalbalwar, S.; Nandgaonkar, A.; Wagh, A. EEG-based diagnosis of alzheimer’s disease using kolmogorov complexity. In Applied Information Processing Systems. AISC; Springer: Berlin/Heidelberg, Germany, 2022; Volume 1354, pp. 157–165. [Google Scholar] [CrossRef]
- Seo, J.H.; Tsuda, I.; Lee, Y.J.; Ikeda, A.; Matsuhashi, M.; Matsumoto, R.; Kikuchi, T.; Kang, H. Pattern Recognition in Epileptic EEG Signals via Dynamic Mode Decomposition. Mathematics 2020, 8, 481. [Google Scholar] [CrossRef]
- Safayari, A.; Bolhasani, H. Depression diagnosis by deep learning using EEG signals: A systematic review. Med. Nov. Technol. Devices 2021, 12, 100102. [Google Scholar] [CrossRef]
- Behzad, R.; Behzad, A. The Role of EEG in the Diagnosis and Management of Patients with Sleep Disorders. J. Behav. Brain Sci. 2021, 11, 257–266. [Google Scholar] [CrossRef]
- Wolpaw, J.; Birbaumer, N.; Heetderks, W.; McFarland, D.; Peckham, P.; Schalk, G.; Donchin, E.; Quatrano, L.; Robinson, C.; Vaughan, T. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 164–173. [Google Scholar] [CrossRef]
- Monsy, J.C. EEG-based biometric identification using frequency-weighted power feature. IET Biom. 2020, 9, 251–258. [Google Scholar] [CrossRef]
- Bhik-Ghanie, R. Pranayama Yoga: Measuring Brainwaves via EEG. In Proceedings of the 13th International RAIS Conference, Rockville, MD, USA, 10–11 June 2019. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Wise, C.; Kodagoda, S.; Louviere, J.; Kahn, B.E.; Townsend, C. Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Syst. Appl. 2013, 40, 3803–3812. [Google Scholar] [CrossRef]
- Hassin, M.E.; Khan, R. NeuroSpy: A low-cost portable IoT enabled EEG and ECG data processor. In Proceedings of the 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 5–7 January 2021; pp. 225–229. [Google Scholar] [CrossRef]
- Shawkat1, S.A.; Ismail2, R.N. Biometric Technologies in Recognition Systems: A Survey. Tikrit J. Pure Sci. 2019, 24, 132. [Google Scholar] [CrossRef]
- Hamidi, H. An approach to develop the smart health using Internet of Things and authentication based on biometric technology. Future Gener. Comput. Syst. 2019, 91, 434–449. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Sahri, N.M.; Karie, N.M.; Ahmed, M.; Valli, C. Biometrics for Internet-of-Things Security: A Review. Sensors 2021, 21, 6163. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.X.; Gong, Y.B.; Hao, F.; Cai, X.Y.; Wu, Y.X. When biometrics meet iot: A survey. In Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation: Core Theory and Applications of Industrial Engineering; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1, pp. 635–643. [Google Scholar]
- Tatar, A.B. Biometric identification system using EEG signals. Neural Comput. Appl. 2023, 35, 1009–1023. [Google Scholar] [CrossRef]
- Svetlakov, M.; Kovalev, I.; Konev, A.; Kostyuchenko, E.; Mitsel, A. Representation Learning for EEG-Based Biometrics Using Hilbert–Huang Transform. Computers 2022, 11, 47. [Google Scholar] [CrossRef]
- Shams, T.B.; Hossain, M.S.; Mahmud, M.F.; Tehjib, M.S.; Hossain, Z.; Pramanik, M.I. EEG-based Biometric Authentication Using Machine Learning: A Comprehensive Survey. ECTI Trans. Electr. Eng. Electron. Commun. 2022, 20, 225–241. [Google Scholar] [CrossRef]
- Jebamani, M.S.A.; Ragavi, M.; Nivetha, K. Biometric Recognition Using EEG Signals And Controlling The Electrical Devices. In Proceedings of the 2023 International Conference on Networking and Communications (ICNWC), Chennai, India, 5–6 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Benomar, M.; Cao, S.; Vishwanath, M.; Vo, K.; Cao, H. Investigation of EEG-Based Biometric Identification Using State-of-the-Art Neural Architectures on a Real-Time Raspberry Pi-Based System. Sensors 2022, 22, 9547. [Google Scholar] [CrossRef]
- Pap, I.A.; Oniga, S.; Alexan, A. Machine Learning EEG Data Analysis For eHealth IoT System. In Proceedings of the IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Washington, DC, USA, 9–15 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Ahad, A.; Ali, Z.; Mateen, A.; Tahir, M.; Hannan, A.; Garcia, N.M.; Pires, I.M. A Comprehensive review on 5G-based Smart Healthcare Network Security: Taxonomy, Issues, Solutions and Future research directions. Array 2023, 18, 100290. [Google Scholar] [CrossRef]
- Lv, Z.; Qiao, L.; Wang, Q.; Piccialli, F. Advanced machine-learning methods for brain-computer interfacing. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 1688–1698. [Google Scholar] [CrossRef] [PubMed]
- Dangi, R.; Lalwani, P.; Choudhary, G.; You, I.; Pau, G. Study and Investigation on 5G Technology: A Systematic Review. Sensors 2022, 22, 26. [Google Scholar] [CrossRef] [PubMed]
- Kamble, K.; Sengupta, J. A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals. Multimed. Tools Appl. 2023, 82, 27269–27304. [Google Scholar] [CrossRef]
- Chittala, A.; Bhupathi, T.; Alakunta, D.P.; Punna, N.K. Machine Learning and IoT Based EEG Signal Classification for Epileptic Seizures Detection. In Proceedings of the 2021 International Conference on Recent Trends on Electronics, Information, Communication &Technology (RTEICT), Bengaluru, India, 27–28 August 2021; pp. 531–537. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Al Machot, F.; Elmachot, A.; Ali, M.; Al Machot, E.; Kyamakya, K. A Deep-Learning Model for Subject-Independent Human Emotion Recognition Using Electrodermal Activity Sensors. Sensors 2019, 19, 1659. [Google Scholar] [CrossRef] [PubMed]
- Hassouneh, A.; Mutawa, A.; Murugappan, M. Development of a Real-Time Emotion Recognition System Using Facial Expressions and EEG based on machine learning and deep neural network methods. Inform. Med. Unlocked 2020, 20, 100372. [Google Scholar] [CrossRef]
- Bashivan, P.; Rish, I.; Yeasin, M.; Codella, N. Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv 2015, arXiv:1511.06448. [Google Scholar]
- Bhadangkar, D.; Pujari, J.D.; Yakkundimath, R. Comparison of Tuplet of Techniques for Facial Emotion Detection. In Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 7–9 October 2020; pp. 725–730. [Google Scholar] [CrossRef]
- Aguiñaga, A.R.; Hernandez, D.E.; Quezada, A.; Calvillo Téllez, A. Emotion Recognition by Correlating Facial Expressions and EEG Analysis. Appl. Sci. 2021, 11, 6987. [Google Scholar] [CrossRef]
- Schoneveld, L.; Othmani, A.; Abdelkawy, H. Leveraging recent advances in deep learning for audio-Visual emotion recognition. Pattern Recognit. Lett. 2021, 146, 1–7. [Google Scholar] [CrossRef]
- Kosti, R.; Alvarez, J.M.; Recasens, A.; Lapedriza, A. Context based emotion recognition using emotic dataset. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2755–2766. [Google Scholar] [CrossRef]
- Alam, F.; Riccardi, G. Predicting Personality Traits using Multimodal Information. In Proceedings of the 2014 ACM Multi Media on Workshop on Computational Personality Recognition, Orlando, FL, USA, 7 November 2014. [Google Scholar] [CrossRef]
- Adiga, S.; Vaishnavi, D.; Saxena, S.; Tripathi, S. Multimodal Emotion Recognition for Human Robot Interaction. In Proceedings of the 2020 7th International Conference on Soft Computing & Machine Intelligence (ISCMI), Stockholm, Sweden, 14–15 November 2020; pp. 197–203. [Google Scholar] [CrossRef]
- Debnath, T.; Reza, M.M.; Rahman, A.; Beheshti, A.; Band, S.S.; Alinejad-Rokny, H. Four-layer ConvNet to facial emotion recognition with minimal epochs and the significance of data diversity. Sci. Rep. 2022, 12, 6991. [Google Scholar] [CrossRef] [PubMed]
- Franzoni, V.; Biondi, G.; Perri, D.; Gervasi, O. Enhancing mouth-based emotion recognition using transfer learning. Sensors 2020, 20, 5222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Expression-EEG Based Collaborative Multimodal Emotion Recognition Using Deep AutoEncoder. IEEE Access 2020, 8, 164130–164143. [Google Scholar] [CrossRef]
- Zhang, D.; Yao, L.; Chen, K.; Monaghan, J. A Convolutional Recurrent Attention Model for Subject-Independent EEG Signal Analysis. IEEE Signal Process. Lett. 2019, 26, 715–719. [Google Scholar] [CrossRef]
- Ancilin, J.; Milton, A. Improved speech emotion recognition with Mel frequency magnitude coefficient. Appl. Acoust. 2021, 179, 108046. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, W.; Shi, Y.; Deng, J.; Ma, Y. Intrinsic Prior Knowledge Driven CICA fMRI Data Analysis for Emotion Recognition Classification. IEEE Access 2019, 7, 59944–59950. [Google Scholar] [CrossRef]
- Tan, Y.; Sun, Z.; Duan, F.; Solé-Casals, J.; Caiafa, C.F. A multimodal emotion recognition method based on facial expressions and electroencephalography. Biomed. Signal Process. Control 2021, 70, 103029. [Google Scholar] [CrossRef]
- Yin, Y.; Zheng, X.; Hu, B.; Zhang, Y.; Cui, X. EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM. Appl. Soft Comput. 2021, 100, 106954. [Google Scholar] [CrossRef]
- Nawaz, R.; Cheah, K.H.; Nisar, H.; Yap, V.V. Comparison of different feature extraction methods for EEG-based emotion recognition. Biocybern. Biomed. Eng. 2020, 40, 910–926. [Google Scholar] [CrossRef]
- Hwang, S.; Ki, M.; Hong, K.; Byun, H. Subject-Independent EEG-based Emotion Recognition using Adversarial Learning. In Proceedings of the 2020 8th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 26–28 February 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Wei, C.; Chen, L.; Song, Z.; Lou, X.; Li, D. EEG-based emotion recognition using simple recurrent units network and ensemble learning. Biomed. Signal Process. Control 2020, 58, 101756. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Hsieh, S. Classifying Different Emotional States by Means of EEG-Based Functional Connectivity Patterns. PLoS ONE 2014, 9, e95415. [Google Scholar] [CrossRef]
- Li, X.; Song, D.; Zhang, P.; Yu, G.; Hou, Y.; Hu, B. Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network. In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016; pp. 352–359. [Google Scholar] [CrossRef]
- Mert, A.; Akan, A. Emotion recognition based on time–frequency distribution of EEG signals using multivariate synchrosqueezing transform. Digit. Signal Process. 2018, 81, 106–115. [Google Scholar] [CrossRef]
- Subasi, A.; Tuncer, T.; Dogan, S.; Tanko, D.; Sakoglu, U. EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier. Biomed. Signal Process. Control 2021, 68, 102648. [Google Scholar] [CrossRef]
- Giannakaki, K.; Giannakakis, G.; Farmaki, C.; Sakkalis, V. Emotional State Recognition Using Advanced Machine Learning Techniques on EEG Data. In Proceedings of the 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), Thessaloniki, Greece, 22–24 June 2017; pp. 337–342. [Google Scholar] [CrossRef]
- Topic, A.; Russo, M. Emotion recognition based on EEG feature maps through deep learning network. Eng. Sci. Technol. Int. J. 2021, 24, 1442–1454. [Google Scholar] [CrossRef]
- Zheng, W.L.; Lu, B.L. Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Vo, H.T.T.; Dang, L.N.T.; Nguyen, V.T.N.; Huynh, V.T. A Survey of Machine Learning algorithms in EEG. In Proceedings of the 2019 6th NAFOSTED Conference on Information and Computer Science (NICS), Hanoi, Vietnam, 12–13 December 2019; pp. 500–505. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Tao, W.; Liotta, A.; Yang, D.; Li, X.; Gao, S.; Sun, Y.; Ge, W.; Zhang, W.; et al. A systematic review on affective computing: Emotion models, databases, and recent advances. Inf. Fusion 2022, 83–84, 19–52. [Google Scholar] [CrossRef]
- Huang, H.; Hu, L.; Xiao, F.; Du, A.; Ye, N.; He, F. An EEG-Based Identity Authentication System with Audiovisual Paradigm in IoT. Sensors 2019, 19, 1664. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.U.; Hossain, M.S.; Muhammad, G.; Alhussein, M.; Rahman, M.A. Cognitive Smart Healthcare for Pathology Detection and Monitoring. IEEE Access 2019, 7, 10745–10753. [Google Scholar] [CrossRef]
- Fingelkurts, A.A.; Fingelkurts, A.A. Morphology and dynamic repertoire of EEG short-term spectral patterns in rest: Explorative study. Neurosci. Res. 2010, 66, 299–312. [Google Scholar] [CrossRef]
- Zhao, W.; Van Someren, E.J.; Li, C.; Chen, X.; Gui, W.; Tian, Y.; Liu, Y.; Lei, X. EEG spectral analysis in insomnia disorder: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 59, 101457. [Google Scholar] [CrossRef]
- Mathur, P.; Chakka, V.K. Graph Signal Processing of EEG signals for Detection of Epilepsy. In Proceedings of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February 2020; pp. 839–843. [Google Scholar] [CrossRef]
- Rasheed, K.; Qayyum, A.; Qadir, J.; Sivathamboo, S.; Kawn, P.; Kuhlmann, L.; O’Brien, T.; Razi, A. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Rev. Biomed. Eng. 2020, 14, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Geethanjali, B.; Adalarasu, K.; Hemapraba, A.; Kumar, S.P.; Rajasekeran, R. Emotion analysis using SAM (Self-Assessment Manikin) scale. Biomed. Res. 2017, 28, 18–24. [Google Scholar]
- Stevens, F.; Murphy, D.; Smith, S.L. The self-assessment manikin and heart rate: Responses to auralised soundscapes. In Proceedings of the Interactive Audio Systems Symposium, York, UK, 23 September 2016; Available online: https://www.york.ac.uk/sadie-project//IASS2016_Proceedings.html (accessed on 1 December 2023).
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Butpheng, C.; Yeh, K.H.; Xiong, H. Security and Privacy in IoT-Cloud-Based e-Health Systems—A Comprehensive Review. Symmetry 2020, 12, 1191. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, W.L.; Li, Z.; Lu, B.L. Investigating EEG-based functional connectivity patterns for multimodal emotion recognition. J. Neural Eng. 2020, 19, 016012. [Google Scholar] [CrossRef] [PubMed]
- Katsigiannis, S.; Ramzan, N. DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices. IEEE J. Biomed. Health Inform. 2018, 22, 98–107. [Google Scholar] [CrossRef]
- Miranda-Correa, J.A.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Trans. Affect. Comput. 2021, 12, 479–493. [Google Scholar] [CrossRef]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A Multimodal Database for Affect Recognition and Implicit Tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef]
- Song, T.; Zheng, W.; Lu, C.; Zong, Y.; Zhang, X.; Cui, Z. MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition. IEEE Access 2019, 7, 12177–12191. [Google Scholar] [CrossRef]
- Carper, R.A.; Moses, P.; Tigue, Z.D.; Courchesne, E. Cerebral lobes in autism: Early hyperplasia and abnormal age effects. NeuroImage 2002, 16, 1038–1051. [Google Scholar] [CrossRef] [PubMed]
- Aileni, R.M.; Pasca, S.; Florescu, A. EEG-brain activity monitoring and predictive analysis of signals using artificial neural networks. Sensors 2020, 20, 3346. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.L.; Zhu, J.Y.; Lu, B.L. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2016, 10, 417–429. [Google Scholar] [CrossRef]
- Rudakov, E.; Laurent, L.; Cousin, V.; Roshdi, A.; Fournier, R.; Nait-ali, A.; Beyrouthy, T.; Kork, S.A. Multi-Task CNN model for emotion recognition from EEG Brain maps. In Proceedings of the 2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART), Paris/Créteil, France, 8–10 December 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Roshdy, A.; Karar, A.S.; Al-Sabi, A.; Barakeh, Z.A.; El-Sayed, F.; Alkork, S.; Beyrouthy, T.; Nait-ali, A. Towards Human Brain Image Mapping for Emotion Digitization in Robotics. In Proceedings of the 2019 3rd International Conference on Bio-engineering for Smart Technologies (BioSMART), Paris, France, 24–26 April 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Thompson, T.; Steffert, T.; Ros, T.; Leach, J.; Gruzelier, J. EEG applications for sport and performance. Methods 2008, 45, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Grobbelaar, M.; Phadikar, S.; Ghaderpour, E.; Struck, A.F.; Sinha, N.; Ghosh, R.; Ahmed, M.Z.I. A Survey on Denoising Techniques of Electroencephalogram Signals Using Wavelet Transform. Signals 2022, 3, 577–586. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Liu, A.; Lee, S.; Chen, X.; Zhang, X.; McKeown, M.J.; Wang, Z.J. Removal of Muscle Artifacts From the EEG: A Review and Recommendations. IEEE Sens. J. 2019, 19, 5353–5368. [Google Scholar] [CrossRef]
- Saini, M.; Satija, U.; Upadhayay, M.D. Wavelet Based Waveform Distortion Measures for Assessment of Denoised EEG Quality With Reference to Noise-Free EEG Signal. IEEE Signal Process. Lett. 2020, 27, 1260–1264. [Google Scholar] [CrossRef]
- Habibzadeh Tonekabony Shad, E.; Molinas, M.; Ytterdal, T. Impedance and Noise of Passive and Active Dry EEG Electrodes: A Review. IEEE Sens. J. 2020, 20, 14565–14577. [Google Scholar] [CrossRef]
- Khng, K.H.; Mane, R. Beyond BCI—Validating a wireless, consumer-grade EEG headset against a medical-grade system for evaluating EEG effects of a test anxiety intervention in school. Adv. Eng. Inform. 2020, 45, 101106. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability. Sensors 2019, 19, 1365. [Google Scholar] [CrossRef]
- Sun, S.; Yan, C.; Lyu, J.; Xin, Y.; Zheng, J.; Yu, Z.; Hu, B. EEG Based Depression Recognition by Employing Static and Dynamic Network Metrics. In Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8 December 2022; pp. 1740–1744. [Google Scholar] [CrossRef]
- Etienne, A.; Laroia, T.; Weigle, H.; Afelin, A.; Kelly, S.K.; Krishnan, A.; Grover, P. Novel Electrodes for Reliable EEG Recordings on Coarse and Curly Hair. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 6151–6154. [Google Scholar] [CrossRef]
- Huo, X.; Wang, J.; Ghovanloo, M. A Magneto-Inductive Sensor Based Wireless Tongue-Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 497–504. [Google Scholar] [CrossRef]
- Sammler, D.; Grigutsch, M.; Fritz, T.; Koelsch, S. Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 2007, 44, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Roshdy, A.; Alkork, S.; Karar, A.; Mhalla, H.; Beyrouthy, T.; Al Barakeh, Z.; Nait-ali, A. Statistical Analysis of Multi-channel EEG Signals for Digitizing Human Emotions. In Proceedings of the 2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART), Paris/Créteil, France, 8–10 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Candra, H.; Yuwono, M.; Chai, R.; Handojoseno, A.; Elamvazuthi, I.; Nguyen, H.T.; Su, S. Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7250–7253. [Google Scholar] [CrossRef]
- Yildirim, H.; Baloglu, U.; Acharya, U.R. A Deep Convolutional Neural Network Model for Automated Identification of Abnormal EEG Signals. Neural Comput. Appl. 2020, 32, 15857–15868. [Google Scholar] [CrossRef]
- Chang, R.; Guo, J. Emotion Recognition of EEG Signals Based on the Ensemble Learning Method: AdaBoost. Math. Probl. Eng. 2021, 2021, 8896062. [Google Scholar] [CrossRef]
- He, H.; Tan, Y.; Ying, J.; Zhang, W. Strengthen EEG-based emotion recognition using firefly integrated optimization algorithm. Appl. Soft Comput. 2020, 94, 106426. [Google Scholar] [CrossRef]
- Liu, J.; Meng, H.; Li, M.; Zhang, F.; Qin, R.; Nandi, A. Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction. Concurr. Comput. Pract. Exp. 2018, 30, e4446. [Google Scholar] [CrossRef]
- Xu, C.; Xia, R.Z. EEG Signal Classification and Feature Extraction Methods Based on Deep Learning: A Review. In Proceedings of the 2023 2nd International Conference on Big Data, Information and Computer Network (BDICN), Xishuangbanna, China, 6–8 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 186–189. [Google Scholar]
- Nandhini, A.; Sangeetha, J. A Review on Deep Learning Approaches for Motor Imagery EEG Signal Classification for Brain–Computer Interface Systems; Springer: Singapore, 2023; pp. 353–365. [Google Scholar]
- Vempati, R.; Sharma, L.D. A Systematic Review on Automated Human Emotion Recognition using Electroencephalogram Signals and Artificial Intelligence. Results Eng. 2023, 18. [Google Scholar] [CrossRef]
- Hassan, F.; Hussain, S.F. Review of EEG Signals Classification Using Machine Learning and Deep-Learning Techniques. In Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning; Springer: Cham, Switzerland, 23 February 2023; pp. 159–183. [Google Scholar]
- Hosseini, M.P.; Pompili, D.; Elisevich, K.; Soltanian-Zadeh, H. Optimized Deep Learning for EEG Big Data and Seizure Prediction BCI via Internet of Things. IEEE Trans. Big Data 2017, 3, 392–404. [Google Scholar] [CrossRef]
- Chu, L.; Pei, L.; Qiu, R. Ahed: A Heterogeneous-Domain Deep Learning Model for IoT-Enabled Smart Health With Few-Labeled EEG Data. IEEE Internet Things J. 2021, 8, 16787–16800. [Google Scholar] [CrossRef]
- Shoka, A.; Dessouky, M.; El-Sherbeny, A.; El-Sayed, A. Literature Review on EEG Preprocessing, Feature Extraction, and Classifications Techniques. Menoufia J. Electron. Eng. Res. 2019, 28, 292–299. [Google Scholar] [CrossRef]
- Gope, P.; Gheraibia, Y.; Kabir, S.; Sikdar, B. A Secure IoT-Based Modern Healthcare System With Fault-Tolerant Decision Making Process. IEEE J. Biomed. Health Inform. 2021, 25, 862–873. [Google Scholar] [CrossRef]
- Sohankar, J.; Sadeghi, K.; Banerjee, A.; Gupta, S.K. E-BIAS: A Pervasive EEG-Based Identification and Authentication System. In Proceedings of the 11th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Cancun, Mexico, 2–6 November 2015; pp. 165–172. [Google Scholar] [CrossRef]
- Debauche, O.; Mahmoudi, S.; Manneback, P.; Assila, A. Fog IoT for Health: A new Architecture for Patients and Elderly Monitoring. Procedia Comput. Sci. 2019, 160, 289–297. [Google Scholar] [CrossRef]
- Yang, H.; Kim, Y. Design and Implementation of High-Availability Architecture for IoT-Cloud Services. Sensors 2019, 19, 3276. [Google Scholar] [CrossRef] [PubMed]
- Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A User-Friendly Application for MEG/EEG Analysis. Comput. Intell. Neurosci. 2011, 2011, 879716. [Google Scholar] [CrossRef]
- Wangoo, D.P.; Reddy, S.R.N. Smart Learning Environments Framework for Educational Applications in IoT Enabled Educational Ecosystems: A Review on AI based GUI Tools for IoT Wearables. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Roshdy, A.; Al Kork, S.; Karar, A.; Al Sabi, A.; Al Barakeh, Z.; ElSayed, F.; Beyrouthy, T.; Nait-Ali, A. Machine Empathy: Digitizing Human Emotions. In Proceedings of the 2021 International Symposium on Electrical, Electronics and Information Engineering, New York, NY, USA, 19–21 February 2021; pp. 307–311. [Google Scholar] [CrossRef]
- Gbadamosi, S.A.; Hancke, G.P.; Abu-Mahfouz, A.M. Building Upon NB-IoT Networks: A Roadmap Towards 5G New Radio Networks. IEEE Access 2020, 8, 188641–188672. [Google Scholar] [CrossRef]
- Kourtis, M.A.; Blanco, B.; Perez-Romero, J.; Makris, D.; Mcgrath, M.J.; Xilouris, G.; Munaretto, D.; Solozabal, R.; Sanchoyerto, A.; Giannoulakis, I.; et al. A Cloud-Enabled Small Cell Architecture in 5G Networks for Broadcast/Multicast Services. IEEE Trans. Broadcast. 2019, 65, 414–424. [Google Scholar] [CrossRef]
- Chettri, L.; Bera, R. A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems. IEEE Internet Things J. 2020, 7, 16–32. [Google Scholar] [CrossRef]
- Din, S.; Paul, A.; Rehman, A. 5G-enabled Hierarchical architecture for software-defined intelligent transportation system. Comput. Netw. 2019, 150, 81–89. [Google Scholar] [CrossRef]
- Oughton, E.J.; Frias, Z.; van der Gaast, S.; van der Berg, R. Assessing the capacity, coverage and cost of 5G infrastructure strategies: Analysis of the Netherlands. Telemat. Inform. 2019, 37, 50–69. [Google Scholar] [CrossRef]
- Ferrus, R.; Sallent, O.; Pérez-Romero, J.; Agusti, R. Management of network slicing in 5G radio access networks: Functional framework and information models. arXiv 2018, arXiv:1803.01142. [Google Scholar]
- Bertenyi, B.; Burbidge, R.; Masini, G.; Sirotkin, S.; Gao, Y. NG Radio Access Network (NG-RAN). J. ICT Stand. 2018, 6, 59–76. [Google Scholar] [CrossRef]
- Ajmeria, R.; Mondal, M.; Banerjee, R.; Halder, T.; Deb, P.K.; Mishra, D.; Nayak, P.; Misra, S.; Pal, S.K.; Chakravarty, D. A Critical Survey of EEG-based BCI Systems for Applications in Industrial Internet of Things. IEEE Commun. Surv. Tutor. 2022, 25, 184–212. [Google Scholar] [CrossRef]
- Anand, P.; Singh, Y.; Selwal, A.; Alazab, M.; Tanwar, S.; Kumar, N. IoT Vulnerability Assessment for Sustainable Computing: Threats, Current Solutions, and Open Challenges. IEEE Access 2020, 8, 168825–168853. [Google Scholar] [CrossRef]
- Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and Security: Challenges and Solutions. Appl. Sci. 2020, 10, 4102. [Google Scholar] [CrossRef]
- Hammadi, A.Y.A.; Yeun, C.Y.; Damiani, E.; Yoo, P.D.; Hu, J.; Yeun, H.K.; Yim, M.S. Explainable artificial intelligence to evaluate industrial internal security using EEG signals in IoT framework. Ad Hoc Netw. 2021, 123, 102641. [Google Scholar] [CrossRef]
- Wong, D.L.T.; Yu, J.; Li, Y.; Deepu, C.J.; Ngo, D.H.; Zhou, C.; Singh, S.R.; Koh, A.; Hong, R.; Veeravalli, B.; et al. An Integrated Wearable Wireless Vital Signs Biosensor for Continuous Inpatient Monitoring. IEEE Sens. J. 2020, 20, 448–462. [Google Scholar] [CrossRef]
- Collu, R.; Mascia, A.; Spanu, A.; Fraschini, M.; Cosseddu, P.; Barbaro, M. A wearable electronic system for EEG recording. In Proceedings of the 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), Villasimius, SU, Italy, 12–15 June 2022; pp. 345–348. [Google Scholar] [CrossRef]
- Inoue, R.; Sugi, T.; Matsuda, Y.; Goto, S.; Nohira, H.; Mase, R. Recording and Characterization of EEGs by Using Wearable EEG Device. In Proceedings of the 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 15–18 October 2019; pp. 194–197. [Google Scholar] [CrossRef]
- Al-Masri, E.; Singh, A.; Souri, A. IoBCT: A Brain Computer Interface using EEG Signals for Controlling IoT Devices. In Proceedings of the 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII ), Hualien, Taiwan, 22–24 July 2022; pp. 18–23. [Google Scholar] [CrossRef]
- Shekokar, K.; Dour, S. Identification of Epileptic Seizures using CNN on Noisy EEG Signals. In Proceedings of the 2022 6th International Conference on Electronics, Communication and Aerospace Technology, Coimbatore, India, 1–3 December 2022; pp. 185–188. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Shi, J.; Peng, B.; Fei, W.; Bi, L. Sound Target Detection Under Noisy Environment Using Brain-Computer Interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 229–237. [Google Scholar] [CrossRef] [PubMed]
- D’Angiulli, A.; Lockman-Dufour, G.; Buchanan, D.M. Promise for Personalized Diagnosis? Assessing the Precision of Wireless Consumer-Grade Electroencephalography across Mental States. Appl. Sci. 2022, 12, 6430. [Google Scholar] [CrossRef]
- Pirrone, D.; Weitschek, E.; Di Paolo, P.; De Salvo, S.; De Cola, M.C. EEG Signal Processing and Supervised Machine Learning to Early Diagnose Alzheimer’s Disease. Appl. Sci. 2022, 12, 5413. [Google Scholar] [CrossRef]
- Gómez-Quintana, S.; Cowhig, G.; Borzacchi, M.; O’Shea, A.; Temko, A.; Popovici, E. An EEG analysis framework through AI and sonification on low power IoT edge devices. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Jalisco, Mexico, 1–5 November 2021; pp. 277–280. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chen, P.C.; Huang, W.C. Cross-Domain Transfer of EEG to EEG or ECG Learning for CNN Classification Models. Sensors 2023, 23, 2458. [Google Scholar] [CrossRef]
- Jagarlapudi, A.; Patil, A.; Rathod, D.P. A Proposed Model on Merging IoT Applications and Portable EEGs for Migraine Detection and Prevention. In Proceedings of the 2021 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Nitte, India, 19–20 November 2021; pp. 265–269. [Google Scholar] [CrossRef]
- Lo, Y.; Hsiao, Y.T.; Chang, F.C. Use Electroencephalogram Entropy as an Indicator to Detect Stress-Induced Sleep Alteration. Appl. Sci. 2022, 12, 4812. [Google Scholar] [CrossRef]
- Almufti, A.M.; Morozov, O.G.; Misbakhov, R.S.; Garovov, Y.K.; Niyazgulyeva, A.M. Experimental Investigation and Comparison of Modulation Types for High Capacity Broadband Transmission System to Support 5G Networks. In Proceedings of the 2023 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russian Federation, 14–16 March 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Carneiro, M.R.; de Almeida, A.T.; Tavakoli, M. Wearable and Comfortable e-Textile Headband for Long-Term Acquisition of Forehead EEG Signals. IEEE Sens. J. 2020, 20, 15107–15116. [Google Scholar] [CrossRef]
- Chenane, K.; Touati, Y.; Boubchir, L.; Daachi, B. Neural Net-Based Approach to EEG Signal Acquisition and Classification in BCI Applications. Computers 2019, 8, 87. [Google Scholar] [CrossRef]
Ref. | Channels | Accuracy | Subject | Database | Detection |
---|---|---|---|---|---|
[41] | 62 | N/A | Dependent | Seed | Positive |
Neutral | |||||
Negative | |||||
[42] | 14 | 77.6–78.96% | Dependent | DEAP | Valence |
Arousal | |||||
Dominance | |||||
[43] | 12 | 81.5–86.87% | Independent | 12 subjects | High |
Low Valence | |||||
Arousal | |||||
[66] | 14 | 87.25% | Dependent | 19 subjects | Happiness and Sadness |
Fear and Anger | |||||
Surprise and Disgust | |||||
[44] | 32 | 96.28–96.62% | Dependent | DEAP | High |
Low Valence | |||||
Arousal | |||||
[45] | 62 | 83.33% | Independent | Seed | Neutral |
sadness and fear | |||||
happiness | |||||
[46] | 32 | N/A | Dependent | MAHNOB | High |
Low Valence | |||||
Arousal | |||||
[47] | 10 | 58.47–60.90% | Independent | N/A | High |
Low Valence | |||||
Arousal |
Dataset | Participants | Clips | EEG Channels | Emotions | Sampling Frequency |
---|---|---|---|---|---|
DEAP | 32 | 40 | 32 | Valence | 512 Hz–down |
Arousal | sampled to 128 Hz | ||||
Dominance | |||||
SEED-IV | 15 | 15 | 62 | Valence | 200 Hz–down |
Arousal | |||||
Dominance | |||||
DREAMER | 23 | 18 | 14 | Valence | N/A |
Arousal | |||||
Dominance | |||||
AMIGOS | 40 Short | 16 Short | 14 | Valence | N/A |
Experiment | Arousal | ||||
37 Long | 4 Long | Dominance | |||
Experiment | |||||
MAHNOB HCI | 30 | Exp 1: 20 clips | 32 | Valence | 256 Hz |
Arousal | |||||
Exp 2: 28 images | |||||
MPED | 23 | 28 | 62 | Joy | 1000 Hz |
Funny | |||||
Neutral | |||||
Sad | |||||
Fear | |||||
Disgust | |||||
Anger |
Signal Band | Frequency Range |
---|---|
Delta | <3 Hz |
Theta | 4–7 Hz |
Alpha | 8–12 Hz |
Beta | 13–30 Hz |
Gamma | >30 Hz |
Standards/Methods | Wi-Fi-Based EEG Sensing Network | Bluetooth-Based EEG Sensing Network | ZigBee-Based EEG Sensing Network |
---|---|---|---|
Protocol | TCP or UDP | Bluetooth | ZigBee Protocol |
Coverage | 150 Feet indoor | 30 Feet indoor | 230 Feet indoor |
Data rates | 2.4 GHz | 2 MHz | 2.4 GHz |
Power consumption | High | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyrouthy, T.; Mostafa, N.; Roshdy, A.; Karar, A.S.; Alkork, S. Review of EEG-Based Biometrics in 5G-IoT: Current Trends and Future Prospects. Appl. Sci. 2024, 14, 534. https://doi.org/10.3390/app14020534
Beyrouthy T, Mostafa N, Roshdy A, Karar AS, Alkork S. Review of EEG-Based Biometrics in 5G-IoT: Current Trends and Future Prospects. Applied Sciences. 2024; 14(2):534. https://doi.org/10.3390/app14020534
Chicago/Turabian StyleBeyrouthy, Taha, Nour Mostafa, Ahmed Roshdy, Abdullah S. Karar, and Samer Alkork. 2024. "Review of EEG-Based Biometrics in 5G-IoT: Current Trends and Future Prospects" Applied Sciences 14, no. 2: 534. https://doi.org/10.3390/app14020534
APA StyleBeyrouthy, T., Mostafa, N., Roshdy, A., Karar, A. S., & Alkork, S. (2024). Review of EEG-Based Biometrics in 5G-IoT: Current Trends and Future Prospects. Applied Sciences, 14(2), 534. https://doi.org/10.3390/app14020534