Diversity in Selected Grain Mineral and Protein among Pigeonpea Landraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location, Planting and Genetic Materials
2.2. Grain Mineral and Protein Determination
2.3. Experimental Design and Data Analysis
3. Results
3.1. Analysis of Variance for Selected Mineral and Grain Contents
3.2. Relationships between Selected Grain Mineral and Protein Content
3.3. Principal Component and Cluster Analysis for Selected Grain Mineral and Protein Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganguly, K.; Gulati, A. Pulses Value Chain-Pigeon Pea and Gram. In Agricultural Value Chains in India, India Studies in Business and Economics; Gulati, A., Ganguly, K., Wardhan, H., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Talari, A.; Shakappa, D. Role of Pigeonpea (Cajanus cajan) in Human Nutrition and Health: A Review. Asian J. Dairy Food Res. 2018, 37, 212–220. [Google Scholar]
- Gwata, E.T. Potential Impact of Edible Tropical Legumes on Crop Productivity in the Small-Holder Sector in Sub-Saharan Africa. J. Food Agric. Environ. 2010, 8, 939–944. [Google Scholar]
- Ojwang, D.; Nyankanga, R.; Imungi, J.; Rao, G.; Olanya, M.; Kumar, V.; He, Z. Effects of Processing and Storage on the Nutrient Composition of Green Vegetable Pigeonpea. J. Food Process. Preserv. 2021, 45, e15714. [Google Scholar] [CrossRef]
- Janeczko, A.; Dziurka, M.; Ostrowska, A.; Koscielniak, J. Improving Vitamin Content and Nutritional Value of Legume Yield Through Water and Hormonal Seed Priming. Legum. Res. 2015, 38, 185–193. [Google Scholar] [CrossRef]
- Abebe, K.B. The Dietary Use of Pigeonpea for Human and Animal Diets. Sci. World J. 2022, 2022, 4873008. [Google Scholar] [CrossRef]
- Dinore, J.M.; Farooqui, M. GC-MS and LC-MS: An Integrated Approach Towards the Phytochemical Evaluation of Methanolic Extract of Pigeonpea (Cajanus cajan) Leaves. Nat. Prod. Res. 2020, 36, 2177–2181. [Google Scholar] [CrossRef]
- Oladunmoye, M.K.; Kehinde, F.Y. Ethnobotanical Survey of Medicinal Plants Used in Treating Viral Infections Among Yoruba Tribe of Southwestern Nigeria. Afr. J. Microbiol. Res. 2011, 5, 2991–3004. [Google Scholar] [CrossRef]
- Hosseinpour-Niazi, S.; Mirmiran, P.; Hedayati, M.; Azizi, F. Substitution of Red Meat with Legumes in the Therapeutic Lifestyle Change Diet Based on Dietary Advice Improves Cardiometabolic Risk Factors in Overweight Type 2 Diabetes Patients: A Cross-over Randomized Clinical Trial. Eur. J. Clin. Nutr. 2015, 6, 592–597. [Google Scholar] [CrossRef]
- Luo, M.; Liu, X.; Zu, Y.; Fu, Y.; Zhang, S.; Yao, L.; Efferth, T. Cajanol, A Novel Anticancer Agent from Pigeonpea Roots, Induces Apoptosis in Human Breast Cancer Cells Through A ROS-Mediated Mitochondrial Pathway. Chem. Biol. Interact 2010, 188, 151–160. [Google Scholar] [CrossRef]
- Vo, T.T.; Yang, N.C.; Yang, S.E.; Chen, C.L.; Wu, C.H.; Song, T.Y. Effects of Cajanus cajan Roots Extracts on the Antioxidant and Anti-Inflammatory Activities. Chin. J. Physiol. 2020, 63, 137–148. [Google Scholar] [CrossRef]
- Grover, J.K.; Yadav, S.; Vats, V. Medicinal Plants of India with Anti-Diabetic Potential. J. Ethnopharmacol. 2002, 81, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Verma, H. Phytochemical Characterization of Twelve Medicinal Plants Used for Sickle Cell Disease Management in Chattisgarh. Int. J. Pharm. Biol. Sci. 2015, 6, 1062–1070. [Google Scholar]
- Ekeke, G.; Shode, F. The Reversion of Sickled Cells by Cajanus cajan. Planta Med. 1985, 51, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Pele, G.I.; Oladiti, E.O.; Bamidele, P.O.; Fadipe, E.A. Influence of Processing Techniques on the Nutritional and Anti-Nutritional Properties of Pigeonpea (Cajanus cajan). Int. J. Eng. Appl. Sci. 2016, 3, 92–94. [Google Scholar]
- Majili, Z.S.; Nyaruhucha, C.; Kulwa, K.; Mutabazi, K.; Rybak, C.; Sieber, S. Preferences and Consumption of Pigeonpeas Among Rural Households as Determinants for Developing Diversified Products for Sustainable Health. Sustainability 2020, 12, 6130. [Google Scholar] [CrossRef]
- Gwata, E.T.; Silim, S.N. Utilization of Landraces for The Genetic Enhancement of Pigeonpea In Eastern and Southern Africa. J. Food Agric. Environ. 2009, 7, 803–806. [Google Scholar]
- Gwata, E.T.; Siambi, M. Genetic Enhancement of Pigeonpea for Latitude Areas in Southern Africa. Afr. J. Biotechnol. 2009, 8, 4413–4417. [Google Scholar]
- Tadele, Z.; Bartels, D. Promoting Orphan Crops Research and Development. Planta 2019, 250, 675–676. [Google Scholar] [CrossRef]
- Mzezewa, J.; Misi, T.; Van Rensburg, L.D. Characterisation of Rainfall at Semi-Arid Ecotope in The Limpopo Province (South Africa) and Its Applications for Suitable Crop Production. Water SA 2012, 36, 19–26. [Google Scholar]
- Thovhogi, F.; Mchau, G.R.A.; Gwata, E.T.; Ntushelo, N. Evaluation of Leaf Mineral, Flavonoid, and Total Phenolic Content in Spider Plant Germplasm. Molecules 2021, 26, 3600. [Google Scholar] [CrossRef]
- Singh, S.K.; Jadhav, P.; Nadanwar, R. Assessment of Nutritional Quality Parameters in Selected Vegetable Type Pigeonpea Genotypes. J. Pharmacogn. Phytochem. 2018, 1, 1446–1450. [Google Scholar]
- Singh, U.; Jambunathan, R.; Saxena, K.; Subrahmanyam, N. Nutritional Quality Evaluation of Newly Developed High-Protein Genotypes of Pigeonpea (Cajanus cajan). J. Sci. Food Agric. 1990, 50, 201–209. [Google Scholar] [CrossRef]
- Murube, E.; Beleggia, R.; Pacetti, D.; Nartea, A.; Frascarelli, G.; Lanzavecchia, G.; Bellucci, E.; Nanni, L.; Gioia, T.; Marciello, U.; et al. Characterization of Nutritional Quality Traits of a Common Bean Germplasm Collection. Foods 2021, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Frossard, E.; Bucher, M.M.; Achler, F.; Mozafar, A.; Hurrell, R. Potential for Increasing the Content and Bioavailability of Fe, Zn and Ca in Plants for Human Nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Yang, S.E.; Vo, T.T.; Chen, C.L.; Yang, N.C.; Chen, C.I.; Song, T.Y. Nutritional Composition, Bioactive Compounds and Functional Evaluation of Various Parts of Cajanus cajan. Agriculture 2020, 10, 558. [Google Scholar] [CrossRef]
- Peters, B.S.E.; Martini, L.A. Nutritional Aspects of the Prevention and Treatment of Osteoporosis. Arq. Bras. Endocrinol. Metabol. 2010, 54, 179–185. [Google Scholar] [CrossRef]
- Singh, U.; Jain, K.C.; Jambunathan, R.; Faris, D.G. Nutritional Quality of Vegetable Pigeonpeas (Cajanus cajan): Mineral and Trace Elements. J. Food Sci. 1984, 49, 645–646. [Google Scholar] [CrossRef]
- Susmitha, D.; Kalaimagal, T.; Senthil, R.; Vetriventhan, M.; Anitha, S.; Manonmani, S.; Jeyakumar, P.; Reddymalla, S.; Peerzada, O.; Arveti, V.N.; et al. Calcium-Rich Pigeonpea Seed Coat: A Potential by Product for Food and Pharmaceutical Industries. Sustainability 2022, 14, 4918. [Google Scholar] [CrossRef]
- Stone, M.; Martyn, L.; Weaver, C. Potassium Intake, Bioavailability, Hypertension, and Glucose Control. Nutrients 2016, 8, 444. [Google Scholar] [CrossRef]
- Sica, D.A.; Struthers, A.D.; Cushman, W.C.; Wood, M.; Banas, J.S., Jr.; Epstein, M. Importance of Potassium in Cardiovascular Disease. J. Clin. Hypertens. 2002, 4, 198–206. [Google Scholar] [CrossRef]
- Adepoju, O.T.; Dudulewa, B.I.; Bamigboye, A.Y. Effect of Cooking Methods on Time and Nutrient Retention of Pigeonpea (Cajanus cajan). Afr. J. Food Agric. Nutr. Dev. 2019, 19, 14708–14725. [Google Scholar]
- Bertinato, J.; Xiao, C.W.; Ratnayake, W.M.N.; Fernandez, L.; Lavergne, C.; Wood, C.; Swist, E. Lower Serum Magnesium Concentration is Associated with Diabetes, Insulin Resistance, and Obesity in South Asian and White Canadian Women but not Men. Food Nutr. Res. 2015, 59, 25974. [Google Scholar] [CrossRef] [PubMed]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed]
- Ray, H.; Bett, K.; Tar’an, B.; Vandenberg, A.; Thavarajah, D.; Warkentin, T. Mineral Micronutrient Content of Cultivars of Field Pea, Chickpea, Common Bean, and Lentil Grown in Saskatchewan, Canada. Crop Sci. 2014, 54, 1698–1708. [Google Scholar] [CrossRef]
- Langyan, S.; Yadava, P.; Khan, F.N.; Bhardwaj, R.; Tripathi, K.; Bhardwaj, V.; Bhardwaj, R.; Gautam, R.K.; Kumar, A. Nutritional and Food Composition Survey of Major Pulses Towards Healthy, Sustainable, and Biofortified Diets. Front. Sustain. Food Syst. 2022, 6, 878269. [Google Scholar] [CrossRef]
- Costello, L.C.; Franklin, R.B. Decreased Zinc in the Development and Progression of Malignancy: An Important Common Relationship and Potential for Prevention and Treatment of Carcinomas. Exp. Opin. Ther. Targets 2017, 21, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Hanumanthappa, D.; Vasudevan, S.N.; Maruthi, J.B.; Shakuntala, N.M.; Macha, S.I. Enrichment of Iron and Zinc Content in Pigeonpea Genotypes through Agronomic Biofortification to Mitigate Malnutrition. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 4334–4342. [Google Scholar]
- Sellamuthu, K.M.; Malathi, P. Biofortification of Crops to Overcome Malnutrition in India. Biotica Res. Today 2021, 3, 402–405. [Google Scholar]
- Dhaliwal, S.S.; Sharma, V.; Shukla, A.K.; Verma, V.; Kaur, M.; Shivay, Y.S. Biofortification—A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter Nutritional Security. Molecules 2022, 27, 1340. [Google Scholar] [CrossRef]
- Behera, S.K.; Shukla, A.K.; Tiwari, P.K.; Tripathi, A.; Singh, P.; Trivedi, V. Classification of Pigeonpea (Cajanus cajan) Genotypes for Zinc Efficiency. Plants 2020, 9, 952. [Google Scholar] [CrossRef]
- Susmitha, D.; Kalaimagal, T.; Senthil, R.; Vetriventhan, M.; Manonmani, S.; Jeyakumar, P.; Anita, B.; Reddymalla, S.; Choudhari, P.L.; Nimje, C.A.; et al. Grain Nutrients Variability in Pigeonpea Genebank Collection and Its Potential for Promoting Nutritional Security in Dryland Ecologies. Front. Plant Sci. 2022, 13, 934296. [Google Scholar] [CrossRef] [PubMed]
- Boorboori, M.R.; Eradatmand Asli, D.; Tehrani, M. The Effect of Dose and Different Methods of Iron, Zinc, Manganese and Copper Application on Yield Components, Morphological Traits and Grain Protein Percentage of Barley Plant (Hordeum vulgare) in Greenhouse Conditions. Adv. Environ. Biol. 2012, 6, 740–746. [Google Scholar]
- Rai, S.; Singh, P.K.; Mankotia, S.; Swain, J.; Satbhai, S.B. Iron Homeostasis in Plants and its Crosstalk with Copper, Zinc, and Manganese. Plant Stress 2021, 1, 100008. [Google Scholar] [CrossRef]
- Millaleo, R.; Reyes-Diaz, M.; Ivanov, A.G.; Mora, M.L.; Alberdi, M. Manganese as Essential and Toxic Element for Plants: Transport, Accumulation and Resistance Mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 476–494. [Google Scholar] [CrossRef]
Genotype | Type | Grain Size and Color | |
---|---|---|---|
Designation | Code | ||
G-01 | SST | Exotic landrace | Small, brown |
G-02 | ENT-3 | Exotic landrace | Small, brown |
G-03 | MP-BLK | Local landrace | Medium, black |
G-04 | HBR | Exotic landrace | Large, red |
G-05 | LW-AM | Local landrace | Medium, grey |
G-06 | MJ-ORIG | Exotic landrace | Large, red |
G-07 | T-POD | Exotic landrace | Medium, cream/white |
G-08 | MP-BRN-SPEC | Local landrace | Medium, brown |
G-09 | UG-22 | Exotic landrace | Medium, cream/white |
G-10 | I-557 | Improved genotype | Large, cream/white |
G-11 | DC | Exotic landrace | Large, cream/white |
G-12 | MJ-HBR | Exotic landrace | Large, red |
G-13 | L-POD-YLW | Exotic landrace | Medium, cream/white |
G-14 | EX-ML-2 | Exotic landrace | Large, red |
Source | df | Mean Squares | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | Cu | Fe | K | Mg | Mn | P | Zn | Protein | ||
Replication | 1 | 16,756.88 | 0.23 | 283.37 | 755,162.79 | 8727.94 | 3.73 | 33,662.84 | 2.40 | 20.04 |
Genotype | 13 | 264,715.48 *** | 4.66 *** | 261.04 | 10,281,201.98 *** | 60,253.00 *** | 718.69 *** | 702,416.16 *** | 65.67 *** | 5.10 |
Mean | - | 1257.46 | 11.24 | 45.24 | 13,014.14 | 1409.94 | 23.34 | 4031.94 | 28.05 | 21.50 |
C.V. (%) | - | 29.06 | 13.65 | 36.29 | 17.37 | 12.50 | 80.30 | 14.82 | 20.33 | 9.66 |
R2 (%) | - | 95.89 | 95.77 | 50.51 | 97.47 | 94.46 | 98.60 | 95.12 | 97.47 | 74.23 |
Genotype | Nutritional Element | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ca (mg/kg) | Cu (mg/kg) | Fe (mg/kg) | K (mg/kg) | Mg (mg/kg) | Mn (mg/kg) | P (mg/kg) | Zn (mg/kg) | Protein (%) | |
G-03 | 2103.4 a ± 7.3 | 8.7 f ± 0.5 | 41.8 a ± 4.5 | 12,227.7 cd ± 328.6 | 1620.6 ab ± 66.6 | 73.1 a ± 5.8 | 4710.3 ab ± 87.8 | 28.4 cde ± 0.6 | 20.0 a ± 0.2 |
G-04 | 1606.3 b ± 70.6 | 9.1 ef ± 0.2 | 36.5 a ± 1.5 | 8874.2 e ± 360.9 | 1830.0 a ± 105.9 | 32.2 c ± 2.5 | 4945.1 a ± 8.1 | 27.2 def ± 0.3 | 21.9 a ± 0.2 |
G-02 | 1552.6 b ± 76.1 | 11.4 bcd ± 0.5 | 34.8 a ± 3.0 | 13,988.9 abc ± 16.8 | 1231.2 d ± 2.7 | 15.8 de ± 1.0 | 2899.2 f ± 31.2 | 21.7 g ± 1.6 | 21.2 a ± 3.5 |
G-05 | 1431.6 bc ± 189.4 | 10.0 def ± 0.7 | 36.7 a ± 3.7 | 9975.8 e ± 526.1 | 1563.3 bc ± 30.4 | 34.1 c ± 34.1 | 4837.5 ab ± 98.4 | 32.5 bc ± 0.6 | 23.1 a ± 2.8 |
G-11 | 1414.2 bcd ± 158.4 | 10.1 def ± 0.1 | 66.0 a ± 40.7 | 13,444.4 bc ± 189.8 | 1423.2 bcd ± 89.7 | 11.7 e ± 2.0 | 4059.4 bcde ± 31.0 | 22.8 fg ± 0.9 | 19.4 a ± 2.8 |
G-12 | 1351.1 bcde ± 78.7 | 11.7 bcd ± 0.9 | 55.2 a ± 20.8 | 13,602.7 bc ± 362.3 | 1316.0 cd ± 30.8 | 14.9 de ± 0.2 | 3714.9 de ± 93.8 | 30.7 bcd ± 2.7 | 21.3 a ± 1.8 |
G-13 | 1306.5 bcdef ± 7.5 | 12.7 ab ± 0.1 | 62.2 a ± 30.2 | 15,025.5 ab ± 924.8 | 1550.2 bc ± 58.2 | 13.0 de ± 0.2 | 3704.9 de ± 428.7 | 35.5 ab ± 0.77 | 21.7 a ± 1.4 |
G-06 | 1266.7 bcdef ± 124.5 | 12.0 bc ± 0.2 | 33.0 a ± 9.4 | 15,278.9 ab ± 3.4 | 1290.5 d ± 24.6 | 12.4 e ± 0.4 | 4198.8 abcde ± 224.1 | 24.8 efg ± 0.53 | 21.4 a ± 2.5 |
G-09 | 1030.4 cdefg ± 116.9 | 14.3 a ± 0.3 | 52.9 a ± 7.8 | 15,817.4 a ± 46.9 | 1321.9 cd ± 37.0 | 13.9 de ± 0.3 | 3548.8 ef ± 43.3 | 38.6 a ± 1.4 | 22.4 a ± 0.1 |
G-01 | 1002.3 cdefg ± 19.9 | 12.7 ab ± 0.4 | 37.4 a ± 7.6 | 14,274.4 abc ± 797.2 | 1263.1 d ± 13.7 | 9.8 e ± 0.5 | 3887.6 cde ± 257.4 | 20.5 g ± 2.2 | 23.4 a ± 1.2 |
G-08 | 994.0 defg ± 114.0 | 10.4 cdef ± 0.2 | 36.7 a ± 8.9 | 14,283.1 abc ± 511.5 | 1271.9 d ± 15.2 | 9.5 e ± 0.3 | 3631.7 def ± 265.3 | 22.7 fg ± 0.4 | 23.2 a ± 2.6 |
G-10 | 961.9 efg ± 114.3 | 12.2 bc ± 0.6 | 35.6 a ± 3.2 | 14,793.0 ab ± 268.9 | 1409.1 bcd ± 53.5 | 9.0 e ± 0.1 | 4310.9 abcd ± 105.9 | 22.5 fg ± 1.0 | 23.5 a ± 0.3 |
G-07 | 898.0 fg ± 69.5 | 11.4 bcd ± 0.2 | 46.8 a ± 2.3 | 9922.9 e ± 506.7 | 1255.8 d ± 97.7 | 25.0 cd ± 2.5 | 4550.8 abc ± 291.1 | 31.8 bcd ± 0.5 | 20.2 a ± 1.1 |
G-14 | 685.3 g ± 162.2 | 10.6 cde ± 0.4 | 57.9 a ± 23.3 | 10,689.0 de ± 1216.0 | 1392.3 bcd ± 106.9 | 52.2 b ± 0.4 | 3447.0 ef ± 86.8 | 32.9 bc ± 2.0 | 18.2 a ± 0.3 |
Variable | Ca | Cu | Fe | K | Mg | Mn | P | Zn | Protein |
---|---|---|---|---|---|---|---|---|---|
Ca | 1.000 | ||||||||
Cu | −0.541 * | 1.000 | |||||||
Fe | −0.148 | 0.157 | 1.000 | ||||||
K | −0.139 | 0.704 ** | 0.074 | 1.000 | |||||
Mg | 0.557 * | −0.573 * | 0.021 | −0.523 | 1.000 | ||||
Mn | 0.424 | −0.646 ** | 0.011 | −0.592 * | 0.507 | 1.000 | |||
P | 0.348 | −0.514 | −0.275 | −0.579 * | 0.647 * | 0.377 | 1.000 | ||
Zn | −0.105 | 0.246 | 0.502 | −0.171 | 0.223 | 0.287 | 0.043 | 1.000 | |
Protein | −0.086 | 0.347 | −0.575 * | 0.332 | −0.04 | −0.532 * | 0.104 | −0.226 | 1.000 |
Parameter | Principal Components | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
Ca | 0.315 | 0.170 | 0.136 |
Cu | −0.449 | −0.112 | −0.349 |
Fe | −0.034 | −0.608 | −0.028 |
K | −0.413 | 0.053 | 0.047 |
Mg | 0.415 | 0.046 | −0.350 |
Mn | 0.421 | −0.184 | 0.125 |
P | 0.369 | 0.234 | −0.375 |
Zn | 0.068 | −0.481 | −0.597 |
Protein | −0.191 | 0.514 | −0.471 |
Eigenvalue | 3.70 | 2.05 | 1.12 |
Proportion (%) | 41.17 | 22.84 | 12.49 |
Cumulative (%) | 41.17 | 64.01 | 76.50 |
Cluster | Sub-Cluster | Number of Genotypes | Total | Genotypes | Type |
---|---|---|---|---|---|
I | a | 2 | 5 | G-01 | Exotic |
G-08 | Local | ||||
b | 2 | G-11 | Exotic | ||
G-12 | Exotic | ||||
c | 1 | G-02 | Exotic | ||
II | a | 3 | 4 | G-06 | Exotic |
G-10 | Improved | ||||
G-13 | Exotic | ||||
b | 1 | G-09 | Exotic | ||
III | a | 2 | 5 | G-03 | Local |
G-14 | Exotic | ||||
b | 3 | G-04 | Exotic | ||
G-05 | Local | ||||
G-07 | Exotic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashifane, D.C.; Chiulele, R.M.; Gwata, E.T. Diversity in Selected Grain Mineral and Protein among Pigeonpea Landraces. Appl. Sci. 2024, 14, 573. https://doi.org/10.3390/app14020573
Mashifane DC, Chiulele RM, Gwata ET. Diversity in Selected Grain Mineral and Protein among Pigeonpea Landraces. Applied Sciences. 2024; 14(2):573. https://doi.org/10.3390/app14020573
Chicago/Turabian StyleMashifane, Dipoo C., Rogerio M. Chiulele, and Eastonce T. Gwata. 2024. "Diversity in Selected Grain Mineral and Protein among Pigeonpea Landraces" Applied Sciences 14, no. 2: 573. https://doi.org/10.3390/app14020573
APA StyleMashifane, D. C., Chiulele, R. M., & Gwata, E. T. (2024). Diversity in Selected Grain Mineral and Protein among Pigeonpea Landraces. Applied Sciences, 14(2), 573. https://doi.org/10.3390/app14020573