Influence of Right Triangular Prism Rough Beds on Hydraulic Jumps
Abstract
:1. Introduction
2. Mathematical Method
2.1. Rough Bed Models and Limitation of Research Condition Scope
2.2. Dimensional Analysis for Hydraulic Jump Characteristics
2.3. Numerical Flow-3D Model Theory
2.4. Entropy Production by Dissipation
2.5. Define Computational Grid and Boundary Conditions for Numerical Simulations
3. Results and Analysis
3.1. Validation of the Numerical Simulation Models
3.2. Water Surface Profiles on Hydraulic Jumps
3.3. Effects of Right Triangular Prism Rough Beds on Sequent Depth Ratio
3.4. Effects of Right Triangular Prism Rough Beds on Jump Length Ratio
3.5. Effects of Right Triangular Prism Rough Beds on Energy Loss
3.6. Evaluate Variation in the Bed Shear Stress for Rough Beds
3.7. Effects of Right Triangular Prism Rough Bed on Total Entropy Generation Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ead, S.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 2002, 128, 656–663. [Google Scholar] [CrossRef]
- Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res. 2009, 3, 109–117. [Google Scholar] [CrossRef]
- Abbaspour, A.; Farsadizadeh, D. Numerical study of hydraulic jumps on corrugated beds using turbulence models. Turk. J. Eng. Environ. Sci. 2009, 33, 61–72. [Google Scholar]
- Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civ. Eng. 2013, 40, 841–847. [Google Scholar] [CrossRef]
- Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinformatics 2020, 22, 1554–1572. [Google Scholar] [CrossRef]
- Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C. Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 2021, 13, 674. [Google Scholar] [CrossRef]
- Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Impacts of Global Climate Change; American Society of Civil Engineers: Reston, VA, USA, 2005; pp. 1–9. [Google Scholar]
- Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci. 2007, 7, 1164–1169. [Google Scholar] [CrossRef]
- Jalil, S.A.J.; Sarhan, S.A.; Ali, S.M. Characteristics of hydraulic jump on a striped channel Bed. J. Duhok Univ. 2017, 20, 654–661. [Google Scholar]
- Dasineh, M.; Ghaderi, A.; Bagherzadeh, M.; Ahmadi, M.; Kuriqi, A. Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods. Mathematics 2021, 9, 3135. [Google Scholar] [CrossRef]
- Viti, N.; Valero, D.; Gualtieri, C. Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook. Water 2018, 11, 28. [Google Scholar] [CrossRef]
- Trieu, T.C.; Ty, T.C. Prediction of the Vortex Evolution and Influence Analysis of Rough Bed in a Hydraulic Jump with the Omega-Liutex Method. Teh. Vjesn.-Tech. Gaz. 2023, 30, 1761–1768. [Google Scholar]
- Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civ. Eng. 2020, 64, 396–407. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Salmasi, F.; Abbaspour, A. Numerical study of hydraulic jump on rough beds stilling basins. J. Civ. Eng. Urban. 2013, 3, 19–24. [Google Scholar]
- Ghaderi, A.; Abbasi, S.; Abraham, J.; Azamathulla, H.M. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Meas. Instrum. 2020, 72, 101711. [Google Scholar] [CrossRef]
- Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A Fluid Dyn. 1992, 4, 1510–1520. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Bejan, A. Entropy Generation through Heat and Fluid Flow; John Wiley: New York, NY, USA, 1994. [Google Scholar]
- Schmandt, B.; Herwig, H. Internal Flow Losses: A Fresh Look at Old Concepts. J. Fluids Eng. 2011, 133, 051201. [Google Scholar] [CrossRef]
- Kock, F.; Herwig, H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes. Int. J. Heat Fluid Flow 2005, 26, 672–680. [Google Scholar] [CrossRef]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng.-Trans. ASME 2008, 130, 078001. [Google Scholar]
- Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng. 1996, 122, 540–548. [Google Scholar] [CrossRef]
Model Name | Schematic of New Rough Beds | Supercritical Flow Parameters | Symbol | Values |
---|---|---|---|---|
M_I | Flow depth | y1 (cm) | 1.5, 2.0, 2.5, 3.0 | |
M_II | Discharge per unit width | q (m2 s−1) | 0.0276–0.1533 | |
M_III | Froude number | Fr1 (-) | 4.8–9.4 | |
M_IV | Reynolds Number | Re1 × 103 | 27.31–151.8 |
Mesh Name | The Cell Size of Nested Mesh Block Δx = Δy = Δz (mm) | The Cell Size of Contained Mesh Block Δx = Δy = Δz (mm) | Node |
---|---|---|---|
Grid 1 | 2.0 | 4.0 | 4.4 × 106 (fine) |
Grid 2 | 2.5 | 5.0 | 2.6 × 106 (medium) |
Grid 3 | 3.5 | 7.0 | 1.2 × 106 (coarse) |
Parameters | Values | Note |
---|---|---|
(-) | 6.110 | Grid 1 |
(-) | 6.125 | Grid 2 |
(-) | 6.725 | Grid 3 |
P (-) | 10.76 | |
GCI21 (%) | 0.031 |
M_II Model | t (cm) | S (cm) | Fr1 | y1 (cm) | Lj/y1 (Grid 1) | Lj/y1 (Grid 2) | Error (%) |
---|---|---|---|---|---|---|---|
No.82 test | 2.0 | 3.0 | 5.65 | 2.0 | 26.05 | 26.75 | 2.62 |
Sheet II Model | Fr1 | y1 (cm) | Schematic for Experimental Rough Bed Model (Sheet II Model) |
---|---|---|---|
B3 test | 9.07 | 1.20 | |
B4 test | 8.03 | 1.58 | |
B5 test | 7.34 | 1.95 |
Test | Fr1 | y2Exp./y1 | y2Sim/y1 | Error (%) | LjExp/y1 | LjSim/y1 | Error (%) |
---|---|---|---|---|---|---|---|
B3 | 9.07 | 9.25 | 9.58 | 3.48 | 32.40 | 31.25 | 3.69 |
B4 | 8.03 | 8.16 | 8.42 | 3.01 | 28.97 | 27.09 | 6.94 |
B5 | 7.34 | 7.44 | 7.74 | 3.97 | 25.23 | 26.31 | 4.11 |
Model Name | Run No. | t (cm) | s (cm) | Ls (cm) | m1 (-) | m2 (-) | Fr1 (-) | y1 (cm) | y2 (cm) | Lj (m) |
---|---|---|---|---|---|---|---|---|---|---|
M_I | No. (1–45) | 2.0 | 1.5, 2.0, 3.0 | 0.0 | 0.0 | 0.75–1.50 | 4.8–9.4 | 1.5–3.0 | 7.3–31.6 | 0.28–1.25 |
M_II | No. (46–90) | 0.75–1.50 | 0.0 | 4.8–8.6 | 1.5–2.5 | 7.2–24.2 | 0.30–0.87 | |||
M_III | No. (91–150) | 2.0, 3.0 | 2.0, 3.0, 4.0 | 0.0 | 1.0, 1.5 | 5.0–8.6 | 1.5–3.0 | 7.6–28.1 | 0.27–1.08 | |
M_IV | No. (151–210) | 1.0, 1.5 | 0.0 | 5.0–8.6 | 1.5–2.5 | 7.35–23.2 | 0.32–0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trinh, C.T.; Zhang, J.; Tran, C.T. Influence of Right Triangular Prism Rough Beds on Hydraulic Jumps. Appl. Sci. 2024, 14, 594. https://doi.org/10.3390/app14020594
Trinh CT, Zhang J, Tran CT. Influence of Right Triangular Prism Rough Beds on Hydraulic Jumps. Applied Sciences. 2024; 14(2):594. https://doi.org/10.3390/app14020594
Chicago/Turabian StyleTrinh, Cong Ty, Jianmin Zhang, and Cong Trieu Tran. 2024. "Influence of Right Triangular Prism Rough Beds on Hydraulic Jumps" Applied Sciences 14, no. 2: 594. https://doi.org/10.3390/app14020594
APA StyleTrinh, C. T., Zhang, J., & Tran, C. T. (2024). Influence of Right Triangular Prism Rough Beds on Hydraulic Jumps. Applied Sciences, 14(2), 594. https://doi.org/10.3390/app14020594