Effects of Fingerroot (Boesenbergia pandurata) Oil on Microflora as an Antimicrobial Agent and on the Formation of Heterocyclic Amines in Fried Meatballs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Minced Pork
2.3. Microbiological Analysis
2.4. Preparation and Heat Treatment of the Meatballs
2.5. Color Measurement of the Meatballs
2.6. Analysis of Heterocyclic Aromatic Amines
2.7. Statistical Analysis
3. Results and Discussion
3.1. Antibacterial Effect
3.2. Effect of Added Fingerroot Essential Oil on Formation of HAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DPPH | 1-diphenyl-2-picrylhydrazyl |
Has | Heterocyclic Aromatic Amines |
IQ | 2-Amino-3-methylimidazo[4,5-f]quinoline (CAS No. 76180-96-6) |
IQx | 2-Amino-3-methylimidazo[4,5-f]quinoxaline (CAS No. 108354-47-8) |
MeIQ | 2-Amino-3,4-dimethylimidazo[4,5-f]quinoline (CAS No. 77094-11-2) |
MeIQx | 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (CAS No. 77500-04-0) |
4,8-DiMeIQx | 2-Amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (CAS No. 95896-78-9) |
7,8-DiMeIQx | 2-Amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (CAS No. 92180-79-5) |
PhIP | 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (CAS No. 105650-23-5) |
Trp-P-1 | 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (CAS No. 62450-06-0) |
Trp-P-2 | 3-Amino-1-methyl-5H-pyrido[4,3-b]indole (CAS No. 62450-07-1) |
Glu-P-1 | 2-Amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole (CAS No. 67730-11-4) |
Glu-P-2 | 2-Aminodipyrido [1,2-a:3′,2′-d]imidazole (CAS No. 67730-10-3) |
AαC | 2-Amino-9H-pyrido[2,3-b]indole (CAS No. 26148-68-5) |
MeAαC | 2-Amino-3-methyl-9H-pyrido[2,3-b]indole (CAS No. 68006-83-7) |
Harman | 1-Methyl-9H-pyrido[3,4-b]indole (CAS No. 486-84-0) |
Norharman | 9H-pyrido[3,4-b]indole (CAS No. 244-63-3) |
References
- Ellebracht, J.W.; King, D.A.; Castillo, A.; Lucia, L.M.; Acuff, G.R.; Harris, K.B.; Savell, J.W. Evaluation of peroxyacetic acid as a potential pre-grinding treatment for control of Escherichia coli O157:H7 and Salmonella Typhimurium on beef trimmings. Meat Sci. 2005, 70, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Geornaras, I.; Yang, H.; Moschonas, G.; Nunnelly, M.C.; Belk, K.E.; Nightingale, K.K.; Woerner, D.R.; Smith, G.C.; Sofos, J.N. Efficacy of chemical interventions against Escherichia coli O157:H7 and multidrug-resistant and antibiotic-susceptible Salmonella on inoculated beef trimmings. J. Food Prot. 2012, 75, 1960–1967. [Google Scholar] [CrossRef] [PubMed]
- Borch, E.; Kant-Muermans, M.-L.; Blixt, Y. Bacterial spoilage of meat and cured meat products. Int. J. Food Microbiol. 1996, 33, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Gram, L.; Ravn, L.; Rasch, M.; Bruhn, J.B.; Christensen, A.B.; Givskov, M. Food spoilage—Interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, D.D.; Jo, C. Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends Food Sci. Technol. 2013, 34, 96–108. [Google Scholar] [CrossRef]
- Aymerich, T.; Picouet, P.A.; Monfort, J.M. Decontamination technologies for meat products. Meat Sci. 2008, 78, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.H.; Xu, X.L.; Liu, Y. Preservation technologies for fresh meat—A review. Meat Sci. 2010, 86, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Stivarius, M.R.; Pohlman, F.W.; McElyea, K.S.; Waldroup, A.L. Effects of hot water and lactic acid treatment of beef trimmings prior to grinding on microbial, instrumental color and sensory properties of ground beef during display. Meat Sci. 2002, 60, 327–334. [Google Scholar] [CrossRef]
- Govaris, A.; Solomakos, N.; Pexara, A.; Chatzopoulou, P.S. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella Enteritidis in minced sheep meat during refrigerated storage. Int. J. Food Microbiol. 2010, 137, 175–180. [Google Scholar] [CrossRef]
- Holley, R.A.; Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005, 22, 273–292. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Trigui, M.; Mansour, R.B.; Jarraya, R.M.; Damak, M.; Jaoua, S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011, 148, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Thongson, C.; Davidson, P.M.; Mahakarnchanakul, W.; Vibulsresth, P. Antimicrobial effect of Thai spices against Listeria monocytogenes and Salmonella Typhimurium DT104. J. Food Prot. 2005, 68, 2054–2058. [Google Scholar] [CrossRef] [PubMed]
- Hygreeva, D.; Pandey, M.C.; Radhakrishna, K. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Sci. 2014, 98, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.M.B.; Khaneghah, A.M.; de Souza Sant’Ana, A. Essential Oils in Food Processing: Chemistry, Safety and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Oswell, N.J.; Thippareddi, H.; Pegg, R.B. Practical use of natural antioxidants in meat products in the U.S.: A review. Meat Sci. 2018, 145, 469–479. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.D.; do Rosário, D.K.A.; Weitz, D.A.; Conte-Junior, C.A. Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends Food Sci. Technol. 2022, 121, 1–13. [Google Scholar] [CrossRef]
- Kingchaiyaphum, W.; Rachtanapun, C. Antimicrobial and antioxidative activities of essential oils in Chinese sausage (Kun-Chiang). Asian J. Food Agro-Ind. 2012, 5, 156–162. [Google Scholar]
- Pattaratanawadee, E.; Rachtanapun, C.; Wanchaitanawong, P.; Mahakarnchanakul, W. Antimicrobial activity of spice extracts against pathogenic and spoilage microorganisms. Agric. Nat. Resour. 2006, 40, 159–165. [Google Scholar]
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef]
- Gibis, M. Heterocyclic aromatic amines in cooked meat products: Causes, formation, occurrence, and risk assessment. Compr. Rev. Food Sci. Food Saf. 2016, 15, 269–303. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jia, W.; Zhu, L.; Mao, L.; Zhang, Y. Recent advances in heterocyclic aromatic amines: An update on food safety and hazardous control from food processing to dietary intake. Compr. Rev. Food Sci. Food Saf. 2020, 19, 124–148. [Google Scholar] [CrossRef]
- Mercogliano, R.; Murru, N.; De Felice, A. Food-borne heterocyclic amines and food safety. Ind. Aliment. 2014, 53, 17–28+34. [Google Scholar]
- Bellamri, M.; Le Hegarat, L.; Vernhet, L.; Baffet, G.; Turesky, R.J.; Langouët, S. Human T lymphocytes bioactivate heterocyclic aromatic amines by forming DNA adducts. Environ. Mol. Mutagen. 2016, 57, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Nowell, S.; Coles, B.; Sinha, R.; MacLeod, S.; Luke Ratnasinghe, D.; Stotts, C.; Kadlubar, F.F.; Ambrosone, C.B.; Lang, N.P. Analysis of total meat intake and exposure to individual heterocyclic amines in a case-control study of colorectal cancer: Contribution of metabolic variation to risk. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2002, 506–507, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Giovannucci, E.; Byrne, C.; Platz, E.A.; Fuchs, C.; Willett, W.C.; Sinha, R. Meat mutagens and risk of distal colon Adenoma in a cohort of U.S. men. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1120–1125. [Google Scholar] [CrossRef]
- WHO-IARC. IARC Monographs Evaluate Consumption of Red Meat and Processed Meat. Available online: http://www.iarc.fr/en/media-centre/pr/2015/pdfs/pr240_E.pdf (accessed on 9 November 2015).
- Puangsombat, K.; Jirapakkul, W.; Smith, J.S. Inhibitory activity of Asian spices on heterocyclic amines formation in cooked beef patties. J. Food Sci. 2011, 76, T174–T180. [Google Scholar] [CrossRef]
- Gibis, M.; Weiss, J. Antioxidant capacity and inhibitory effect of grape seed and rosemary extract in marinades on the formation of heterocyclic amines in fried beef patties. Food Chem. 2012, 134, 766–774. [Google Scholar] [CrossRef]
- Cao, H.; Chen, B.H.; Inbaraj, B.S.; Chen, L.; Alvarez-Rivera, G.; Cifuentes, A.; Zhang, N.; Yang, D.J.; Simal-Gandara, J.; Wang, M. Preventive potential and mechanism of dietary polyphenols on the formation of heterocyclic aromatic amines. Food Front. 2020, 1, 134–151. [Google Scholar] [CrossRef]
- Yang, X.; Blecker, C.; Liu, H.; Zhang, D.; Wang, Z. Effect of plant polyphenols with different m-hydroxy and o-hydroxy groups on the inhibition of heterocyclic amines formation in roasted meat. Food Control 2023, 153, 109960. [Google Scholar] [CrossRef]
- Oz, E. Inhibitory effects of black cumin on the formation of heterocyclic aromatic amines in meatball. PLoS ONE 2019, 14, e0221680. [Google Scholar] [CrossRef] [PubMed]
- Kikugawa, K. Involvement of free radicals in the formation of heterocyclic amines and prevention by antioxidants. Cancer Lett. 1999, 143, 123–126. [Google Scholar] [CrossRef]
- Gibis, M. Optimized HPLC method for analysis of polar and nonpolar heterocyclic amines in cooked meat products. J. AOAC Int. 2009, 92, 715–724. [Google Scholar] [CrossRef]
- Gibis, M. Effect of oil marinades with garlic, onion, and lemon juice on the formation of heterocyclic aromatic amines in fried beef patties. J. Agric. Food Chem. 2007, 55, 10240–10247. [Google Scholar] [CrossRef]
- Gross, G.A.; Grueter, A. Quantitation of mutagenic/carcinogenic heterocyclic aromatic amines in food products. J. Chromatogr. A 1992, 592, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Buckley, D.J.; Kerry, J.P. Display life of sheep meats retail packaged under atmospheres of various volumes and compositions. Meat Sci. 2004, 68, 649–658. [Google Scholar] [CrossRef]
- Kennedy, C.; Buckley, D.J.; Kerry, J.P. Influence of different gas compositions on the short-term storage stability of mother-packaged retail-ready lamb packs. Meat Sci. 2005, 69, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef]
- Radha Krishnan, K.; Babuskin, S.; Azhagu Saravana Babu, P.; Sasikala, M.; Sabina, K.; Archana, G.; Sivarajan, M.; Sukumar, M. Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. Int. J. Food Microbiol. 2014, 171, 32–40. [Google Scholar] [CrossRef]
- Charnchai, P.; Gamjanagoonchorn, W.; Rachtanapun, C. Antimicrobial activity of sausage casing soaked in essential oil for inhibiting food microorganisms. In Proceedings of the 46th Kasetsart University Annual Conference, Bangkok, Thailand, 29 January–1 February 2008; Kasetsart University: Bangkok, Thailand, 2008; pp. 254–261. [Google Scholar]
- EC. Commission Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, L338, 1–26. [Google Scholar]
- Puangsombat, K.; Smith, J.S. Inhibition of heterocyclic amine formation in beef patties by ethanolic extracts of rosemary. J. Food Sci. 2010, 75, T40–T47. [Google Scholar] [CrossRef] [PubMed]
- Zamora, R.; Aguilar, I.; Granvogl, M.; Hidalgo, F.J. Toxicologically relevant aldehydes produced during the frying process are trapped by food phenolics. J. Agric. Food Chem. 2016, 64, 5583–5589. [Google Scholar] [CrossRef] [PubMed]
- Elbir, Z.; Ekiz, E.; Aoudeh, E.; Oz, E.; Savaş, A.; Brennan, C.; Proestos, C.; Khan, M.R.; Elobeid, T.; Brennan, M.; et al. Enhancing effect of chia seeds on heterocyclic amine generation in meatball. Int. J. Food Sci. Technol. 2023, 58, 2560–2572. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour difference∆ E-A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
Condition | Batch | Shelf-Life 1 | Microbial Reduction (log cfu/g) 2 | ||
---|---|---|---|---|---|
TVC | LAB | Enterobacteriaceae | |||
Addition | Control | 3 | |||
0.25 | 3 | 0.27 ± 0.14 a | 0.15 ± 0.06 a | 0.18 ± 0.46 a | |
0.50 | 3 | 0.34 ± 0.22 a | 0.27 ± 0.12 a | 0.50 ± 0.99 a | |
1.00 | 9 | 0.71 ± 0.10 ab | 0.74 ± 0.10 ab | 3.76 ± 0.54 b | |
2.50 | 15 | 2.22 ± 1.48 b | 2.71 ± 1.84 bc | 6.65 ± 0.08 c | |
Marinated | Control | 3 | |||
0.25 | 9 | −0.57 ± 0.56 a | 0.09 ± 0.76 a | 4.85 ± 1.05 b | |
0.50 | 9 | 0.27 ± 0.66 a | −0.16 ± 0.72 a | 6.89 ± 0.51 c | |
1.00 | 12 | 1.08 ± 0.48 ab | 0.13 ± 0.59 a | 6.89 ± 0.51 c | |
2.50 | 18 | 3.83 ± 0.60 c | 2.97 ± 0.38 c | 6.89 ± 0.51 c |
Control | 0.25 wt% EOF | 0.5 wt% EOF | 1 wt% EOF | 2.5 wt% EOF | |
---|---|---|---|---|---|
L* | 45.5 ± 2.31 a | 45.70 ± 2.21 a | 45.87 ± 1.51 a | 46.92 ± 1.68 a | 46.20 ± 1.44 a |
a* | 8.91 ± 0.84 a | 9.98 ± 0.81 b | 9.58 ± 0.86 b | 9.17 ± 0.65 ab | 9.45 ± 0.69 b |
b* | 14.68 ± 1.39 a | 16.00 ± 1.35 b | 15.71 ± 1.7 ab | 15.54 ± 1.33 ab | 15.40 ± 1.20 ab |
ΔE | 3.76 ± 2.09 a | 3.64 ± 1.80 a | 3.84 ± 1.86 a | 3.29 ± 1.28 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soikam, P.; Rachtanapun, C.; Suriyarak, S.; Weiss, J.; Gibis, M. Effects of Fingerroot (Boesenbergia pandurata) Oil on Microflora as an Antimicrobial Agent and on the Formation of Heterocyclic Amines in Fried Meatballs. Appl. Sci. 2024, 14, 712. https://doi.org/10.3390/app14020712
Soikam P, Rachtanapun C, Suriyarak S, Weiss J, Gibis M. Effects of Fingerroot (Boesenbergia pandurata) Oil on Microflora as an Antimicrobial Agent and on the Formation of Heterocyclic Amines in Fried Meatballs. Applied Sciences. 2024; 14(2):712. https://doi.org/10.3390/app14020712
Chicago/Turabian StyleSoikam, Panida, Chitsiri Rachtanapun, Sarisa Suriyarak, Jochen Weiss, and Monika Gibis. 2024. "Effects of Fingerroot (Boesenbergia pandurata) Oil on Microflora as an Antimicrobial Agent and on the Formation of Heterocyclic Amines in Fried Meatballs" Applied Sciences 14, no. 2: 712. https://doi.org/10.3390/app14020712
APA StyleSoikam, P., Rachtanapun, C., Suriyarak, S., Weiss, J., & Gibis, M. (2024). Effects of Fingerroot (Boesenbergia pandurata) Oil on Microflora as an Antimicrobial Agent and on the Formation of Heterocyclic Amines in Fried Meatballs. Applied Sciences, 14(2), 712. https://doi.org/10.3390/app14020712