Recent Advances in Bio-Based Wood Protective Systems: A Comprehensive Review
Abstract
:1. Introduction
2. Bio-Based Coating’s Matrix
2.1. Vegetable Oils and Their Derivatives
2.2. Natural Biopolymers for Wood Protection
3. Bio-Based Preservatives and Impregnators
4. Bio-Based Fillers
4.1. Weathering Resistance Bio-Based Fillers
4.2. Reinforcing Bio-Based Fillers
4.3. Bio-Based Additives for Antimicrobial Wood Systems
4.4. Green Flame Retardant and Intumescent Systems
5. Bio-Based Pigments and Dyes
5.1. Natural Pigments
5.2. Microbial Pigments
6. Conclusions and Future Outlook
- Embracing sustainability and holistic solutions: there is a noticeable move towards using bio-based materials and embracing circular economy principles. The inclusion of substances such as linseed oil, cellulose fibres, and pigments from wood demonstrates a strong commitment to being environmentally friendly. Protective measures extend across the coating mix, preservatives, bio-based fillers, and natural pigment dyes, highlighting both efficiency and sustainability in a holistic approach;
- Bio-based components’ impact on coating durability: essential oils, vegetable oils, and bio-based polymers play a crucial role in creating environmentally friendly and long-lasting coating layers. These components provide protection and beneficial properties to wood surfaces. By incorporating bio-based elements into coatings, a harmonious blend is achieved between reduced hardness and increased durability, ensuring sustainable protection for wood;
- Wood preservation and eco-friendly alternatives: studying natural compounds, such as stilbenes, pyrolysis distillates, tannins, and caffeine, aligns with efforts to minimize environmental impact and presents promising avenues for preserving wood. These alternatives showcase remarkable antifungal and antibacterial properties, effectively meeting the standards of eco-friendly practices in wood preservation;
- Enhancing durability with bio-based fillers: biocarbon particles derived from hemp, extracts from olive leaves, lignin, and tannins demonstrate significant potential in boosting weather resilience and strengthening mechanical properties. Their use aligns closely with the objectives of the circular economy, emphasizing sustainability and efficient resource use;
- Innovative pigments for sustainable coatings: incorporating sustainable pigments and dyes sourced from natural and microbial origins introduces innovation while upholding protective qualities.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cox, T.R. Wood: A History. By Joachim Radkau, Translated by Patrick Camiller (Cambridge, UK: Polity Press, 2012. Viii plus 399 pp.). J. Soc. Hist. 2014, 47, 1098–1099. [Google Scholar] [CrossRef]
- Hoadley, R.B. Chemical and Physical Properties of Wood. In The Structural Conservation of Panel Paintings: Proceedings. Part 1: Wood Science and Technology; Getty Publications: Los Angeles, CA, USA, 1998; pp. 2–20. [Google Scholar]
- Hao, J.; Wu, X.; Oporto, G.; Liu, W.; Wang, J. Structural Analysis and Strength-to-Weight Optimization of Wood-Based Sandwich Composite with Honeycomb Core under Three-Point Flexural Test. Eur. J. Wood Wood Prod. 2020, 78, 1195–1207. [Google Scholar] [CrossRef]
- Kim, J.K.; Pal, K. Recent Advances in the Processing of Wood-Plastic Composites; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-14877-4. [Google Scholar]
- Janin, G.; Goncalez, J.; Ananias, R.; Charrier, B.; Fernandes da Silva, G.; Dilem, A. Aesthetics Appreciation of Wood Colour and Patterns by Colorimetry. Part 1. Colorimetry Theory for the CIELab System. Maderas Cienc. Tecnol. 2001, 3, 3–13. [Google Scholar] [CrossRef]
- Lowden, L.A.; Hull, T.R. Flammability Behaviour of Wood and a Review of the Methods for Its Reduction. Fire Sci. Rev. 2013, 2, 4. [Google Scholar] [CrossRef]
- Tolvaj, L.; Popescu, C.-M.; Molnar, Z.; Preklet, E. Effects of Air Relative Humidity and Temperature on Photodegradation Processes in Beech and Spruce Wood. Bioresources 2016, 11, 296–305. [Google Scholar] [CrossRef]
- Mattonai, M.; Watanabe, A.; Shiono, A.; Ribechini, E. Degradation of Wood by UV Light: A Study by EGA-MS and Py-GC/MS with on Line Irradiation System. J. Anal. Appl. Pyrolysis 2019, 139, 224–232. [Google Scholar] [CrossRef]
- Varganici, C.-D.; Rosu, L.; Rosu, D.; Mustata, F.; Rusu, T. Sustainable Wood Coatings Made of Epoxidized Vegetable Oils for Ultraviolet Protection. Environ. Chem. Lett. 2021, 19, 307–328. [Google Scholar] [CrossRef]
- Jirouš-Rajković, V.; Miklečić, J. Enhancing Weathering Resistance of Wood—A Review. Polymers 2021, 13, 1980. [Google Scholar] [CrossRef]
- Hochmańska-Kaniewska, P.; Janiszewska, D.; Oleszek, T. Enhancement of the Properties of Acrylic Wood Coatings with the Use of Biopolymers. Prog. Org. Coat. 2022, 162, 106522. [Google Scholar] [CrossRef]
- Veigel, S.; Grüll, G.; Pinkl, S.; Obersriebnig, M.; Müller, U.; Gindl-Altmutter, W. Improving the Mechanical Resistance of Waterborne Wood Coatings by Adding Cellulose Nanofibres. React. Funct. Polym. 2014, 85, 214–220. [Google Scholar] [CrossRef]
- Rosu, L.; Mustata, F.; Rosu, D.; Varganici, C.-D.; Rosca, I.; Rusu, T. Bio-Based Coatings from Epoxy Resins Crosslinked with a Rosin Acid Derivative for Wood Thermal and Anti–Fungal Protection. Prog. Org. Coat. 2021, 151, 106008. [Google Scholar] [CrossRef]
- Miri Tari, S.M.; Tarmian, A.; Azadfallah, M. Improving Fungal Decay Resistance of Solvent and Waterborne Polyurethane-Coated Wood by Free and Microencapsulated Thyme Essential Oil. J. Coat. Technol. Res. 2022, 19, 959–966. [Google Scholar] [CrossRef]
- Mustata, F.; Rosu, D.; Varganici, C.-D.; Rosu, L.; Rosca, I.; Tudorachi, N. Assessing the Thermal and Fungal Behavior of Eco-Friendly Epoxy Thermosets Derived from Vegetable Oils for Wood Protective Coatings. Prog. Org. Coat. 2022, 163, 106612. [Google Scholar] [CrossRef]
- Pacheco, C.M.; Cecilia, B.A.; Reyes, G.; Oviedo, C.; Fernández-Pérez, A.; Elso, M.; Rojas, O.J. Nanocomposite Additive of SiO2/TiO2/Nanocellulose on Waterborne Coating Formulations for Mechanical and Aesthetic Properties Stability on Wood. Mater. Today Commun. 2021, 29, 102990. [Google Scholar] [CrossRef]
- Salla, J.; Pandey, K.K.; Srinivas, K. Improvement of UV Resistance of Wood Surfaces by Using ZnO Nanoparticles. Polym. Degrad. Stab. 2012, 97, 592–596. [Google Scholar] [CrossRef]
- Jalili, M.M.; Moradian, S.; Dastmalchian, H.; Karbasi, A. Investigating the Variations in Properties of 2-Pack Polyurethane Clear Coat through Separate Incorporation of Hydrophilic and Hydrophobic Nano-Silica. Prog. Org. Coat. 2007, 59, 81–87. [Google Scholar] [CrossRef]
- Janesch, J.; Czabany, I.; Hansmann, C.; Mautner, A.; Rosenau, T.; Gindl-Altmutter, W. Transparent Layer-by-Layer Coatings Based on Biopolymers and CeO2 to Protect Wood from UV Light. Prog. Org. Coat. 2020, 138, 105409. [Google Scholar] [CrossRef]
- Cheumani Yona, A.M.; Žigon, J.; Ngueteu Kamlo, A.; Pavlič, M.; Dahle, S.; Petrič, M. Preparation, Surface Characterization, and Water Resistance of Silicate and Sol-Silicate Inorganic-Organic Hybrid Dispersion Coatings for Wood. Materials 2021, 14, 3559. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Yi, Z.; Liao, M.; Qin, Z. Stable Superhydrophobic Wood Surface Constracting by KH580 and Nano-Al2O3 on Polydopamine Coating with Two Process Methods. Colloids Surf. Physicochem. Eng. Asp. 2022, 637, 128219. [Google Scholar] [CrossRef]
- Nkeuwa, W.N.; Riedl, B.; Landry, V. Transparent UV-Cured Clay/UV-Based Nanocomposite Coatings on Wood Substrates: Surface Roughness and Effect of Relative Humidity on Optical Properties. J. Coat. Technol. Res. 2017, 14, 555–569. [Google Scholar] [CrossRef]
- Xu, X.; Liu, F.; Jiang, L.; Zhu, J.Y.; Haagenson, D.; Wiesenborn, D. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl. Mater. Interfaces 2013, 6, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar]
- Duan, X.; Liu, S.; Huang, E.; Shen, X.; Wang, Z.; Li, S.; Jin, C. Superhydrophobic and Antibacterial Wood Enabled by Polydopamine-Assisted Decoration of Copper Nanoparticles. Colloids Surf. Physicochem. Eng. Asp. 2020, 602, 125145. [Google Scholar] [CrossRef]
- Qian, L.; Long, L.; Xu, J.F. Surface Modification of Nano-Titanium and Its Effect on the Antibacterial Property of Waterborne Wood Coating. Key Eng. Mater. 2014, 609–610, 88–93. [Google Scholar] [CrossRef]
- Calovi, M.; Coroneo, V.; Palanti, S.; Rossi, S. Colloidal Silver as Innovative Multifunctional Pigment: The Effect of Ag Concentration on the Durability and Biocidal Activity of Wood Paints. Prog. Org. Coat. 2023, 175, 107354. [Google Scholar] [CrossRef]
- Yan, X.; Chang, Y.; Qian, X. Effect of the Concentration of Pigment Slurry on the Film Performances of Waterborne Wood Coatings. Coatings 2019, 9, 635. [Google Scholar] [CrossRef]
- Yan, X.; Wang, L.; Qian, X. Influence of Thermochromic Pigment Powder on Properties of Waterborne Primer Film for Chinese Fir. Coatings 2019, 9, 742. [Google Scholar] [CrossRef]
- Wiemann, M.C. Characteristics and Availability of Commercially Important Woods. In Wood Handbook-Wood as an Engineering Material; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999; Volume 113, pp. 11–134. [Google Scholar]
- Kaestner, D.; Petutschnigg, A.; Schnabel, T.; Illy, A.; Taylor, A. Influence of Wood Surface Color on the Performance of Luminescent Pigments. For. Prod. J. 2016, 66, 211–213. [Google Scholar] [CrossRef]
- Reinprecht, L.; Panek, M. Effects of Wood Roughness, Light Pigments, and Water Repellent on the Color Stability of Painted Spruce Subjected to Natural and Accelerated Weathering. BioResources 2015, 10, 7203–7219. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and Properties of Natural Fiber Polymer Composites: A Comprehensive Review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Mustapha, R.; Rahmat, A.R.; Abdul Majid, R.; Mustapha, S.N.H. Vegetable Oil-Based Epoxy Resins and Their Composites with Bio-Based Hardener: A Short Review. Polym. Plast. Technol. Mater. 2019, 58, 1311–1326. [Google Scholar] [CrossRef]
- Sansonetti, E.; Cīrule, D.; Kuka, E.; Andersone, I.; Andersons, B. Investigation of Linseed Oil Based Wood Coatings: Effect of Artificial Weathering. Key Eng. Mater. 2019, 800, 223–227. [Google Scholar] [CrossRef]
- Calovi, M.; Rossi, S. Impact of High Concentrations of Cellulose Fibers on the Morphology, Durability and Protective Properties of Wood Paint. Coatings 2023, 13, 721. [Google Scholar] [CrossRef]
- Calovi, M.; Rossi, S. From Wood Waste to Wood Protection: New Application of Black Bio Renewable Water-Based Dispersions as Pigment for Bio-Based Wood Paint. Prog. Org. Coat. 2023, 180, 107577. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.; Zhang, Y.; Wang, H. Microbial Dyeing for Inoculation and Pigment Used in Wood Processing: Opportunities and Challenges. Dyes Pigments 2021, 186, 109021. [Google Scholar] [CrossRef]
- Vega Gutierrez, S.M.; Stone, D.W.; He, R.; Vega Gutierrez, P.T.; Walsh, Z.M.; Robinson, S.C. Potential Use of the Pigments from Scytalidium Cuboideum and Chlorociboria Aeruginosa to Prevent ‘Greying’ Decking and Other Outdoor Wood Products. Coatings 2021, 11, 511. [Google Scholar] [CrossRef]
- Calovi, M.; Rossi, S. Synergistic Contribution of Bio-Based Additives in Wood Paint: The Combined Effect of Pigment Deriving from Spirulina and Multifunctional Filler Based on Carnauba Wax. Prog. Org. Coat. 2023, 182, 107713. [Google Scholar] [CrossRef]
- Calovi, M.; Rossi, S. Comparative Analysis of the Advantages and Disadvantages of Utilizing Spirulina-Derived Pigment as a Bio-Based Colorant for Wood Impregnator. Coatings 2023, 13, 1158. [Google Scholar] [CrossRef]
- Samyn, P.; Bosmans, J.; Cosemans, P. Comparative Study on Mechanical Performance of Photocurable Acrylate Coatings with Bio-Based versus Fossil-Based Components. Mater. Today Commun. 2022, 32, 104002. [Google Scholar] [CrossRef]
- Kartal, S.N.; Hwang, W.-J.; Imamura, Y.; Sekine, Y. Effect of Essential Oil Compounds and Plant Extracts on Decay and Termite Resistance of Wood. Holz Als Roh-Werkst. 2006, 64, 455–461. [Google Scholar] [CrossRef]
- Nonomura, Y.; Sano, M.; Sekine, R.; Daikoku, Y. Friction Dynamics of Wood Coated with Vegetable Oil. J. Oleo Sci. 2021, 70, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Wexler, H. Polymerization of Drying Oils. Chem. Rev. 1964, 64, 591–611. [Google Scholar] [CrossRef]
- Arminger, B.; Jaxel, J.; Bacher, M.; Gindl-Altmutter, W.; Hansmann, C. On the Drying Behavior of Natural Oils Used for Solid Wood Finishing. Prog. Org. Coat. 2020, 148, 105831. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B. Efficacy of Linseed- and Tung-Oil-Treated Wood against Wood-Decay Fungi and Water Uptake. Int. Biodeterior. Biodegrad. 2013, 85, 223–227. [Google Scholar] [CrossRef]
- He, Z.; Qian, J.; Qu, L.; Yan, N.; Yi, S. Effects of Tung Oil Treatment on Wood Hygroscopicity, Dimensional Stability and Thermostability. Ind. Crops Prod. 2019, 140, 111647. [Google Scholar] [CrossRef]
- Marrot, L.; Zouari, M.; Schwarzkopf, M.; DeVallance, D.B. Sustainable Biocarbon/Tung Oil Coatings with Hydrophobic and UV-Shielding Properties for Outdoor Wood Substrates. Prog. Org. Coat. 2023, 177, 107428. [Google Scholar] [CrossRef]
- Veigel, S.; Lems, E.-M.; Grüll, G.; Hansmann, C.; Rosenau, T.; Zimmermann, T.; Gindl-Altmutter, W. Simple Green Route to Performance Improvement of Fully Bio-Based Linseed Oil Coating Using Nanofibrillated Cellulose. Polymers 2017, 9, 425. [Google Scholar] [CrossRef]
- Janesch, J.; Arminger, B.; Gindl-Altmutter, W.; Hansmann, C. Superhydrophobic Coatings on Wood Made of Plant Oil and Natural Wax. Prog. Org. Coat. 2020, 148, 105891. [Google Scholar] [CrossRef]
- Kabasakal, Y.; Baysal, E.; Babahan-Bircan, İ.; Altay, Ç.; Toker, H. Investigation of Some Physical and Mechanical Properties of Wood Coated with Plant-Oil Based Epoxide Nanocomposite Materials. Prog. Org. Coat. 2023, 176, 107383. [Google Scholar] [CrossRef]
- Briede, S.; Platnieks, O.; Barkane, A.; Sivacovs, I.; Leitans, A.; Lungevics, J.; Gaidukovs, S. Tailored Biobased Resins from Acrylated Vegetable Oils for Application in Wood Coatings. Coatings 2023, 13, 657. [Google Scholar] [CrossRef]
- Wuzella, G.; Mahendran, A.R.; Müller, U.; Kandelbauer, A.; Teischinger, A. Photocrosslinking of an Acrylated Epoxidized Linseed Oil: Kinetics and Its Application for Optimized Wood Coatings. J. Polym. Environ. 2012, 20, 1063–1074. [Google Scholar] [CrossRef]
- Wang, T.; Li, L.; Cao, Y.; Wang, Q.; Guo, C. Preparation and Flame Retardancy of Castor Oil Based UV-Cured Flame Retardant Coating Containing P/Si/S on Wood Surface. Ind. Crops Prod. 2019, 130, 562–570. [Google Scholar] [CrossRef]
- Wang, T.; Li, L.; Wang, Q.; Xie, G.; Guo, C. Castor Oil Based UV-Cured Coatings Using Thiol-Ene Click Reaction for Thermal Degradation with Flame Retardance. Ind. Crops Prod. 2019, 141, 111798. [Google Scholar] [CrossRef]
- Hu, J.; Huang, W.; Wu, Y.; Zhao, Y.; Wan, Y.; Meng, Y.; Liang, W.; Jiang, T.; Zhang, Q. “Liquid-Like” Surface Topography Waterborne Polyurethane Coatings with Bio-Based and Easy-Sliding Oil Repellency. Macromol. Mater. Eng. 2022, 307, 2100933. [Google Scholar] [CrossRef]
- Patil, A.M.; Jagtap, R.N. PU-Coating Performance of Bio-Based Hyperbranched Alkyd Resin on Mild Steel and Wood Substrate. J. Coat. Technol. Res. 2021, 18, 741–752. [Google Scholar] [CrossRef]
- Shang, Q.; Chen, J.; Liu, C.; Hu, Y.; Hu, L.; Yang, X.; Zhou, Y. Facile Fabrication of Environmentally Friendly Bio-Based Superhydrophobic Surfaces via UV-Polymerization for Self-Cleaning and High Efficient Oil/Water Separation. Prog. Org. Coat. 2019, 137, 105346. [Google Scholar] [CrossRef]
- Li, X.; Wang, D.; Zhao, L.; Hou, X.; Liu, L.; Feng, B.; Li, M.; Zheng, P.; Zhao, X.; Wei, S. UV LED Curable Epoxy Soybean-Oil-Based Waterborne PUA Resin for Wood Coatings. Prog. Org. Coat. 2021, 151, 105942. [Google Scholar] [CrossRef]
- Liu, M.; Lyu, S.; Peng, L.; Cai, L.; Huang, Z.; Lyu, J. Improvement of Toughness and Mechanical Properties of Furfurylated Wood by Biosourced Epoxidized Soybean Oil. ACS Sustain. Chem. Eng. 2021, 9, 8142–8155. [Google Scholar] [CrossRef]
- Rosu, D.; Bodîrlău, R.; Teacă, C.; Rosu, L.; Varganici, C. Epoxy and Succinic Anhydride Functionalized Soybean Oil for Wood Protection against UV Light Action. J. Clean. Prod. 2016, 112, 1175–1183. [Google Scholar] [CrossRef]
- Auclair, N.; Kaboorani, A.; Riedl, B.; Landry, V. Acrylated Betulin as a Comonomer for Bio-Based Coatings. Part I: Characterization, Photo-Polymerization Behavior and Thermal Stability. Ind. Crops Prod. 2015, 76, 530–537. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, T.; Li, L.; Wang, Q.; Guo, C. Facile Synthesis and Construction of Renewable, Waterborne and Flame-Retardant UV-Curable Coatings in Wood Surface. Prog. Org. Coat. 2022, 172, 107104. [Google Scholar] [CrossRef]
- Sung, J.; Sun, X.S. Cardanol Modified Fatty Acids from Camelina Oils for Flexible Bio-Based Acrylates Coatings. Prog. Org. Coat. 2018, 123, 242–253. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Sun, X.S. Epoxidized and Acrylated Epoxidized Camelina Oils for Ultraviolet-Curable Wood Coatings. J. Am. Oil Chem. Soc. 2018, 95, 1307–1318. [Google Scholar] [CrossRef]
- Raychura, A.J.; Jauhari, S.; Prajapati, V.S.; Dholakiya, B.Z. Synthesis and Performance Evaluation of Vegetable Oil Based Wood Finish Polyurethane Coating. Bioresour. Technol. Rep. 2018, 3, 88–94. [Google Scholar] [CrossRef]
- Raychura, A.J.; Jauhari, S.; Dholakiya, B.Z. Development of Wood Protective Polyurethane Coatings from Mahua Oil-Based Polyetheramide Polyol: A Renewable Approach. Soft Mater. 2018, 16, 209–219. [Google Scholar] [CrossRef]
- Bessike, J.G.; Fongnzossie, E.F.; Ndiwe, B.; Mfomo, J.Z.; Pizzi, A.; Biwolé, A.B.; Biwôlé, J.J.E.; Yham, N.G.; Chen, X.; Akono, P.N. Chemical Characterization and the Effect of a Polyherbal Varnish Coating on the Preservation of Ayous Wood (Triplochiton scleroxylon). Ind. Crops Prod. 2022, 187, 115415. [Google Scholar] [CrossRef]
- Sanson, C.S.L.; Helm, C.V.; Magalhães, W.L.E.; De Muniz, G.I.B.; Missio, A.L.; De Cademartori, P.H.G. Enhancing Water Repellency and Decay Resistance of Wood by Using Water-Soluble Fractions Separated from Pyrolytic Lignin of Fast-Pyrolysis Bio-Oil. Ind. Crops Prod. 2022, 177, 114540. [Google Scholar] [CrossRef]
- Walsh-Korb, Z.; Stelzner, I.; Dos Santos Gabriel, J.; Eggert, G.; Avérous, L. Morphological Study of Bio-Based Polymers in the Consolidation of Waterlogged Wooden Objects. Materials 2022, 15, 681. [Google Scholar] [CrossRef]
- Woźniak, M.; Gromadzka, K.; Kwaśniewska-Sip, P.; Cofta, G.; Ratajczak, I. Chitosan–Caffeine Formulation as an Ecological Preservative in Wood Protection. Wood Sci. Technol. 2022, 56, 1851–1867. [Google Scholar] [CrossRef]
- Cho, W.; Shields, J.R.; Dubrulle, L.; Wakeman, K.; Bhattarai, A.; Zammarano, M.; Fox, D.M. Ion–Complexed Chitosan Formulations as Effective Fire-Retardant Coatings for Wood Substrates. Polym. Degrad. Stab. 2022, 197, 109870. [Google Scholar] [CrossRef]
- Yuan, B.; Guo, M.; Huang, Z.; Naik, N.; Hu, Q.; Guo, Z. A UV-Shielding and Hydrophobic Graphitic Carbon Nitride Nanosheets/Cellulose Nanofibril (gCNNS/CNF) Transparent Coating on Wood Surface for Weathering Resistance. Prog. Org. Coat. 2021, 159, 106440. [Google Scholar] [CrossRef]
- Griffini, G.; Passoni, V.; Suriano, R.; Levi, M.; Turri, S. Polyurethane Coatings Based on Chemically Unmodified Fractionated Lignin. ACS Sustain. Chem. Eng. 2015, 3, 1145–1154. [Google Scholar] [CrossRef]
- Bergamasco, S.; Tamantini, S.; Zikeli, F.; Vinciguerra, V.; Scarascia Mugnozza, G.; Romagnoli, M. Synthesis and Characterizations of Eco-Friendly Organosolv Lignin-Based Polyurethane Coating Films for the Coating Industry. Polymers 2022, 14, 416. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Moinuddin, K.; Zhu, H.; Joseph, P. Passive Fire Protection of Wood Using Some Bio-Derived Fire Retardants. Fire Saf. J. 2021, 120, 103074. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Q.; Li, L.; Wang, Q.; Guo, C. Construction of Waterborne Flame-Retardant Itaconate-Based Unsaturated Polyesters and Application for UV-Curable Hybrid Coatings on Wood. Prog. Org. Coat. 2023, 183, 107826. [Google Scholar] [CrossRef]
- Zhong, J.; Huang, Y.; Chen, Y.; Li, L.; Guo, C. Synthesis of Eugenol-Modified Epoxy Resin and Application on Wood Flame Retardant Coating. Ind. Crops Prod. 2022, 183, 114979. [Google Scholar] [CrossRef]
- Wang, X.; Nabipour, H.; Kan, Y.-C.; Song, L.; Hu, Y. A Fully Bio-Based, Anti-Flammable and Non-Toxic Epoxy Thermosetting Network for Flame-Retardant Coating Applications. Prog. Org. Coat. 2022, 172, 107095. [Google Scholar] [CrossRef]
- Faye, I.; Decostanzi, M.; Ecochard, Y.; Caillol, S. Eugenol Bio-Based Epoxy Thermosets: From Cloves to Applied Materials. Green Chem 2017, 19, 5236–5242. [Google Scholar] [CrossRef]
- De Hoyos-Martínez, P.L.; Issaoui, H.; Herrera, R.; Labidi, J.; Charrier-El Bouhtoury, F. Wood Fireproofing Coatings Based on Biobased Phenolic Resins. ACS Sustain. Chem. Eng. 2021, 9, 1729–1740. [Google Scholar] [CrossRef]
- Piao, X.; Guo, H.; Cao, Y.; Wang, Z.; Jin, C. Preparation and Exploration of Multifunctional Wood Coating Based on an Interpenetrating Network System of CO2-Polyurethane and Natural Bio-Based Benzoxazine. Colloids Surf. Physicochem. Eng. Asp. 2022, 649, 129437. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, Y.; Pan, X.; Liu, Q.; Wang, J.; Jin, M.; Li, J. Renewable UV-Curable Polyester Methacrylate/Cellulose Nanocrystals Composite Resin for Wood Waterproof Coating. Nanotechnology 2021, 32, 275703. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, D.; Srivats, D.S.; More, A. Synthesis of Vanillin-Based UV Curable Polyurethane Dispersions for Wood Coating Applications. J. Coat. Technol. Res. 2023, 20, 1773–1788. [Google Scholar] [CrossRef]
- Peng, C.; Zhong, J.; Ma, X.; Huang, A.; Chen, G.; Luo, W.; Zeng, B.; Yuan, C.; Xu, Y.; Dai, L. Transparent, Hard-Wearing and Bio-Based Organic/Silica Hybrid Coating for Bamboo with Enhanced Flame Retardant and Antifungal Properties. Prog. Org. Coat. 2022, 167, 106830. [Google Scholar] [CrossRef]
- Rajput, S.D.; Mahulikar, P.P.; Gite, V.V. Biobased Dimer Fatty Acid Containing Two Pack Polyurethane for Wood Finished Coatings. Prog. Org. Coat. 2014, 77, 38–46. [Google Scholar] [CrossRef]
- Maity, D.; Tade, R.; Sabnis, A.S. Development of Bio-Based Polyester-Urethane-Acrylate (PUA) from Citric Acid for UV-Curable Coatings. J. Coat. Technol. Res. 2023, 20, 1083–1097. [Google Scholar] [CrossRef]
- Poohphajai, F.; Sandak, J.; Sailer, M.; Rautkari, L.; Belt, T.; Sandak, A. Bioinspired Living Coating System in Service: Evaluation of the Wood Protected with Biofinish during One-Year Natural Weathering. Coatings 2021, 11, 701. [Google Scholar] [CrossRef]
- Barbero-López, A.; Akkanen, J.; Lappalainen, R.; Peräniemi, S.; Haapala, A. Bio-Based Wood Preservatives: Their Efficiency, Leaching and Ecotoxicity Compared to a Commercial Wood Preservative. Sci. Total Environ. 2021, 753, 142013. [Google Scholar] [CrossRef]
- Lu, J.; Venäläinen, M.; Julkunen-Tiitto, R.; Harju, A.M. Stilbene Impregnation Retards Brown-Rot Decay of Scots Pine Sapwood. Holzforschung 2016, 70, 261–266. [Google Scholar] [CrossRef]
- Barbero-López, A.; Chibily, S.; Tomppo, L.; Salami, A.; Ancin-Murguzur, F.J.; Venäläinen, M.; Lappalainen, R.; Haapala, A. Pyrolysis Distillates from Tree Bark and Fibre Hemp Inhibit the Growth of Wood-Decaying Fungi. Ind. Crops Prod. 2019, 129, 604–610. [Google Scholar] [CrossRef]
- Yildiz, Ü.C.; Kilic, C.; Gürgen, A.; Yildiz, S. Possibility of Using Lichen and Mistletoe Extracts as Potential Natural Wood Preservative. Maderas Cienc. Tecnol. 2020, 22, 179–188. [Google Scholar] [CrossRef]
- Anttila, A.-K.; Pirttilä, A.M.; Häggman, H.; Harju, A.; Venäläinen, M.; Haapala, A.; Holmbom, B.; Julkunen-Tiitto, R. Condensed Conifer Tannins as Antifungal Agents in Liquid Culture. Holzforschung 2013, 67, 825–832. [Google Scholar] [CrossRef]
- Silveira, A.G.D.; Santini, E.J.; Kulczynski, S.M.; Trevisan, R.; Wastowski, A.D.; Gatto, D.A. Tannic Extract Potential as Natural Wood Preservative of Acacia Mearnsii. An. Acad. Bras. Ciênc. 2017, 89, 3031–3038. [Google Scholar] [CrossRef] [PubMed]
- Tomak, E.D.; Gonultas, O. The Wood Preservative Potentials of Valonia, Chestnut, Tara and Sulphited Oak Tannins. J. Wood Chem. Technol. 2018, 38, 183–197. [Google Scholar] [CrossRef]
- Sommerauer, L.; Thevenon, M.-F.; Petutschnigg, A.; Tondi, G. Effect of Hardening Parameters of Wood Preservatives Based on Tannin Copolymers. Holzforschung 2019, 73, 457–467. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, T.; Mi, N.; Wang, Y.; Li, G.; Wang, L.; Xie, Y. Antifungal Activity of Monoterpenes against Wood White-Rot Fungi. Int. Biodeterior. Biodegrad. 2016, 106, 157–160. [Google Scholar] [CrossRef]
- Woźniak, M.; Kwaśniewska-Sip, P.; Waśkiewicz, A.; Cofta, G.; Ratajczak, I. The Possibility of Propolis Extract Application in Wood Protection. Forests 2020, 11, 465. [Google Scholar] [CrossRef]
- Shiny, K.S.; Sundararaj, R.; Vijayalakshmi, G. Potential Use of Coconut Shell Pyrolytic Oil Distillate (CSPOD) as Wood Protectant against Decay Fungi. Eur. J. Wood Wood Prod. 2018, 76, 767–773. [Google Scholar] [CrossRef]
- Šimůnková, K.; Reinprecht, L.; Nábělková, J.; Hýsek, Š.; Kindl, J.; Borůvka, V.; Lišková, T.; Šobotník, J.; Pánek, M. Caffeine–Perspective Natural Biocide for Wood Protection against Decaying Fungi and Termites. J. Clean. Prod. 2021, 304, 127110. [Google Scholar] [CrossRef]
- Medeiros, F.C.M.D.; Gouveia, F.N.; Bizzo, H.R.; Vieira, R.F.; Del Menezzi, C.H.S. Fungicidal Activity of Essential Oils from Brazilian Cerrado Species against Wood Decay Fungi. Int. Biodeterior. Biodegrad. 2016, 114, 87–93. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Z.; Huang, Q.; Zhang, D. Antifungal Activity of Several Essential Oils and Major Components against Wood-Rot Fungi. Ind. Crops Prod. 2017, 108, 278–285. [Google Scholar] [CrossRef]
- Bardage, S.; Westin, M.; Fogarty, H.A.; Trey, S. The Effect of Natural Product Treatment of Southern Yellow Pine on Fungi Causing Blue Stain and Mold. Int. Biodeterior. Biodegrad. 2014, 86, 54–59. [Google Scholar] [CrossRef]
- Barbero-López, A.; Monzó-Beltrán, J.; Virjamo, V.; Akkanen, J.; Haapala, A. Revalorization of Coffee Silverskin as a Potential Feedstock for Antifungal Chemicals in Wood Preservation. Int. Biodeterior. Biodegrad. 2020, 152, 105011. [Google Scholar] [CrossRef]
- Rosu, L.; Varganici, C.D.; Mustata, F.; Rosu, D.; Rosca, I.; Rusu, T. Epoxy Coatings Based on Modified Vegetable Oils for Wood Surface Protection against Fungal Degradation. ACS Appl. Mater. Interfaces 2020, 12, 14443–14458. [Google Scholar] [CrossRef] [PubMed]
- Rosu, L.; Mustata, F.; Varganici, C.; Rosu, D.; Rusu, T.; Rosca, I. Thermal Behaviour and Fungi Resistance of Composites Based on Wood and Natural and Synthetic Epoxy Resins Cured with Maleopimaric Acid. Polym. Degrad. Stab. 2019, 160, 148–161. [Google Scholar] [CrossRef]
- Nowrouzi, Z.; Mohebby, B.; Ebrahimi, M.; Petrič, M. Weathering Performance of Thermally Modified Wood Coated with Polyacrylate Containing Olive Leaf Extract as a Bio-Based Additive. Eur. J. Wood Wood Prod. 2021, 79, 1551–1562. [Google Scholar] [CrossRef]
- Cheumani Yona, A.M.; Žigon, D.; Žigon, J.; Ngueteu Kamlo, A.; Pavlic, M.; Dahle, S.; Petrič, M. Thermochemical Conversion of Wood in Levulinic Acid and Application in the Preparation of Wood Coatings. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Zikeli, F.; Vinciguerra, V.; D’Annibale, A.; Capitani, D.; Romagnoli, M.; Scarascia Mugnozza, G. Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials 2019, 9, 281. [Google Scholar] [CrossRef]
- Tomak, E.D.; Arican, F.; Gonultas, O.; Sam Parmak, E.D. Influence of Tannin Containing Coatings on Weathering Resistance of Wood: Water Based Transparent and Opaque Coatings. Polym. Degrad. Stab. 2018, 151, 152–159. [Google Scholar] [CrossRef]
- Grigsby, W.; Steward, D. Applying the Protective Role of Condensed Tannins to Acrylic-Based Surface Coatings Exposed to Accelerated Weathering. J. Polym. Environ. 2018, 26, 895–905. [Google Scholar] [CrossRef]
- Lozhechnikova, A.; Bellanger, H.; Michen, B.; Burgert, I.; Österberg, M. Surfactant-Free Carnauba Wax Dispersion and Its Use for Layer-by-Layer Assembled Protective Surface Coatings on Wood. Appl. Surf. Sci. 2017, 396, 1273–1281. [Google Scholar] [CrossRef]
- Henn, K.A.; Forsman, N.; Zou, T.; Österberg, M. Colloidal Lignin Particles and Epoxies for Bio-Based, Durable, and Multiresistant Nanostructured Coatings. ACS Appl. Mater. Interfaces 2021, 13, 34793–34806. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Tang, S.; Chi, X.; Han, G.; Bai, L.; Shi, S.Q.; Zhu, Z.; Cheng, W. Valorization of Lignin from Biorefinery: Colloidal Lignin Micro-Nanospheres as Multifunctional Bio-Based Fillers for Waterborne Wood Coating Enhancement. ACS Sustain. Chem. Eng. 2022, 10, 11655–11665. [Google Scholar] [CrossRef]
- Jusic, J.; Tamantini, S.; Romagnoli, M.; Vinciguerra, V.; Di Mattia, E.; Zikeli, F.; Cavalera, M.; Scarascia Mugnozza, G. Improving Sustainability in Wood Coating: Testing Lignin and Cellulose Nanocrystals as Additives to Commercial Acrylic Wood Coatings for Bio-Building. IForest Biogeosci. For. 2021, 14, 499. [Google Scholar] [CrossRef]
- Tamantini, S.; Bergamasco, S.; Zikeli, F.; Humar, M.; Cavalera, M.; Romagnoli, M. Cellulose Nano Crystals (CNC) as Additive for a Bio-Based Waterborne Acrylic Wood Coating: Decay, Artificial Weathering, Physical and Chemical Tests. Nanomaterials 2023, 13, 442. [Google Scholar] [CrossRef]
- Kaboorani, A.; Auclair, N.; Riedl, B.; Landry, V. Physical and Morphological Properties of UV-Cured Cellulose Nanocrystal (CNC) Based Nanocomposite Coatings for Wood Furniture. Prog. Org. Coat. 2016, 93, 17–22. [Google Scholar] [CrossRef]
- Barbero-López, A.; Ochoa-Retamero, A.; López-Gómez, Y.; Vilppo, T.; Venäläinen, M.; Lavola, A.; Julkunen-Tiitto, R.; Haapala, A. Activity of Spent Coffee Ground Cinnamates against Wood-Decaying Fungi in Vitro. BioResources 2018, 13, 6555–6564. [Google Scholar] [CrossRef]
- Moutaouafiq, S.; Farah, A.; Ez Zoubi, Y.; Ghanmi, M.; Satrani, B.; Bousta, D. Antifungal Activity of Pelargonium Graveolens Essential Oil and Its Fractions Against Wood Decay Fungi. J. Essent. Oil Bear. Plants 2019, 22, 1104–1114. [Google Scholar] [CrossRef]
- Andeme Ela, R.C.; Chipkar, S.H.; Bal, T.L.; Xie, X.; Ong, R.G. Lignin–Propiconazole Nanocapsules Are an Effective Bio-Based Wood Preservative. ACS Sustain. Chem. Eng. 2021, 9, 2684–2692. [Google Scholar] [CrossRef]
- Vek, V.; Balzano, A.; Poljanšek, I.; Humar, M.; Oven, P. Improving Fungal Decay Resistance of Less Durable Sapwood by Impregnation with Scots Pine Knotwood and Black Locust Heartwood Hydrophilic Extractives with Antifungal or Antioxidant Properties. Forests 2020, 11, 1024. [Google Scholar] [CrossRef]
- Vek, V.; Oven, P.; Humar, M. Phenolic Extractives of Wound-Associated Wood of Beech and Their Fungicidal Effect. Int. Biodeterior. Biodegrad. 2013, 77, 91–97. [Google Scholar] [CrossRef]
- Dixit, A.; Wazarkar, K.; Sabnis, A.S. Antimicrobial Uv Curable Wood Coatings Based on Citric Acid. Pigment Resin Technol. 2021, 50, 533–544. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, S.; Wang, D.; Li, Y.; Zheng, P.; Gao, L.; Huo, D.; Cheng, L.; Wei, S. Study on Antibacterial Wood Coatings with Soybean Protein Isolate Nano-Silver Hydrosol. Prog. Org. Coat. 2022, 165, 106766. [Google Scholar] [CrossRef] [PubMed]
- Chukwunwike, S.A.; Okafor, K.J. A Review on Some Selected Bio-Based (Green) Flame Retardants. J. Eng. Technol. 2019, 8, 38–43. [Google Scholar]
- Wang, M.; Yin, G.-Z.; Yang, Y.; Fu, W.; Díaz Palencia, J.L.; Zhao, J.; Wang, N.; Jiang, Y.; Wang, D.-Y. Bio-Based Flame Retardants to Polymers: A Review. Adv. Ind. Eng. Polym. Res. 2023, 6, 132–155. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, T.; Wang, Q.; Guo, C. Synthesis of Biobased Flame-Retardant Carboxylic Acid Curing Agent and Application in Wood Surface Coating. ACS Sustain. Chem. Eng. 2019, 7, 14727–14738. [Google Scholar] [CrossRef]
- Trovagunta, R.; Hubbe, M.A. Suberin as a Bio-Based Flame-Retardant? BioResources 2023, 18, 4388–4391. [Google Scholar] [CrossRef]
- Li, M.; Hao, X.; Hu, M.; Huang, Y.; Qiu, Y.; Li, L. Synthesis of Bio-Based Flame-Retardant Epoxy Co-Curing Agent and Application in Wood Surface Coating. Prog. Org. Coat. 2022, 167, 106848. [Google Scholar] [CrossRef]
- Song, F.; Liu, T.; Fan, Q.; Li, D.; Ou, R.; Liu, Z.; Wang, Q. Sustainable, High-Performance, Flame-Retardant Waterborne Wood Coatings via Phytic Acid Based Green Curing Agent for Melamine-Urea-Formaldehyde Resin. Prog. Org. Coat. 2022, 162, 106597. [Google Scholar] [CrossRef]
- Qian, W.; Li, X.; Zhou, J.; Liu, Y.; Wu, Z. High Synergistic Effects of Natural-Based Tea Saponin in Intumescent Flame-Retardant Coatings for Enhancement of Flame Retardancy and Pyrolysis Performance. Prog. Org. Coat. 2019, 127, 408–418. [Google Scholar] [CrossRef]
- Aqlibous, A.; Tretsiakova-McNally, S.; Fateh, T. Waterborne Intumescent Coatings Containing Industrial and Bio-Fillers for Fire Protection of Timber Materials. Polymers 2020, 12, 757. [Google Scholar] [CrossRef]
- Hu, X.; Sun, Z.; Zhu, X.; Sun, Z. Montmorillonite-Synergized Water-Based Intumescent Flame Retardant Coating for Plywood. Coatings 2020, 10, 109. [Google Scholar] [CrossRef]
- Reinprecht, L.; Panek, M. Effect of Pigments in Paints on the Natural and Accelerated Ageing of Spruce Wood Surfaces. Acta Fac. Xylologiae 2013, 55, 71–84. [Google Scholar]
- Zhang, Z.; Du, H.; Wang, W.; Wang, Q. Property Changes of Wood-Fiber/HDPE Composites Colored by Iron Oxide Pigments after Accelerated UV Weathering. J. For. Res. 2010, 21, 59–62. [Google Scholar] [CrossRef]
- Binoj, J.S.; Edwin Raj, R.; Daniel, B.S.S. Comprehensive Characterization of Industrially Discarded Fruit Fiber, Tamarindus Indica L. as a Potential Eco-Friendly Bio-Reinforcement for Polymer Composite. J. Clean. Prod. 2017, 142, 1321–1331. [Google Scholar] [CrossRef]
- Richard, S.; Selwin Rajadurai, J.; Manikandan, V. Influence of Particle Size and Particle Loading on Mechanical and Dielectric Properties of Biochar Particulate-Reinforced Polymer Nanocomposites. Int. J. Polym. Anal. Charact. 2016, 21, 462–477. [Google Scholar] [CrossRef]
- Gatamaneni, L.; Orsat, V.; Lefsrud, M. Valuable Bioproducts Obtained from Microalgal Biomass and Their Commercial Applications: A Review. Environ. Eng. Res. 2018, 23, 229–241. [Google Scholar]
- Christaki, E.; Bonos, E.; Florou-Paneri, P. Chapter 14—Innovative Microalgae Pigments as Functional Ingredients in Nutrition. In Handbook of Marine Microalgae; Kim, S.-K., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 233–243. ISBN 978-0-12-800776-1. [Google Scholar]
- Liu, Y.; Yu, Z.; Zhang, Y.; Qi, C.; Tang, R.; Zhao, B.; Wang, H.; Han, Y. Microbial Dyeing—Infection Behavior and Influence of Lasiodiplodia Theobromae in Poplar Veneer. Dyes Pigments 2020, 173, 107988. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Yu, Z.; Qi, C.; Tang, R.; Zhao, B.; Wang, H.; Han, Y. Microbial Dyes: Dyeing of Poplar Veneer with Melanin Secreted by Lasiodiplodia Theobromae Isolated from Wood. Appl. Microbiol. Biotechnol. 2020, 104, 3367–3377. [Google Scholar] [CrossRef]
Matrix/Additive | Properties | Results | Ref |
---|---|---|---|
Bio-based and fossil-based acrylate monomers and oligomers | Lower hardness and higher abrasion resistance | Hardness (Shore D) lower than 70 and wear index W (g/cycle) higher than 2.5 × 10−5 | [43] |
Essential oils | Antimicrobial and antifungal features | Termite mortality between 10 and 100% | [44] |
Vegetable oils | Lower coefficient of friction | Static friction coefficient µs below 0.6 | [45] |
Tung and linseed oils | Higher hydrophobicity | Water contact angle above 80° over 28 days | [47] |
Tung and linseed oils | Fungicidal activity | Mass loss below 10% after exposure to wood-decay fungi for 12 weeks | [48] |
Tung oil | Lower moisture absorption | Swelling coefficient of about 1.5% | [49] |
Tung oil + hemp-derived biocarbon | Improved protection against the weathering effects | Evolution of L*, a*, and b* below 0.5 during 180 days of natural weathering | [50] |
Linseed oil + nanofibrillated cellulose | Improved wear resistance | Water contact angle above 90° after 20 Taber cycles | [51] |
Bio-based epoxide amine | Decreased water absorption | Water absorption reduced to 73.42% after 168 h of soaking | [53] |
Castor oil | Increased hydrophobicity | Water contact angle increased from 70° to 100° | [58] |
Castor oil + SiO2 nanoparticles | Increased hydrophobicity | Water contact angle increased from 80° to 160° | [60] |
Epoxidized soybean oil | Increased hydrophobicity | Water absorption reduced to 40% after 40 days of soaking | [62] |
Acrylated epoxidized soybean oil | Increased pencil hardness and adhesion | Pencil hardness of 2–3B and adhesion of 4B | [65] |
Acrylated epoxidized soybean oil | Improved tensile strength | Tensile strength between 10 and 30 mPa | [66] |
Vegetable resins + oil extracted from seeds of Jatropha curcas | Increased protection against termite | Mass loss reduced from ≈45% to less than 2% | [70] |
Cellulose nanofibril + graphitic carbon nitride nanosheets | Improved colour stability | Colour change reduced from 16 to 3 after 15 days of UV-A exposure | [75] |
Lignin-based polyurethane | Moderate hydrophobic character | Water contact angle between 79° and 85° | [76] |
Fish gelatine | Improved fire resistance | Peak heat release rate pHRR of 64 Wg−1 and chair residue of 16.85 wt.% | [78] |
Luteolin-derived epoxy resin | Improved fire resistance | Peak heat release rate pHRR of 373 kW/m2 | [81] |
Polyphenolic resins from tannins and lignin | Improved anti-flammable performance | Reduced heat of combustion release of about 19.9 MJ/kg | [83] |
Polyurethane + benzoxazine | Increased hydrophobicity | Water contact angle increased from 115° to 150° | [84] |
Bio-based diol synthesized from vanillin | Improved mechanical properties | High pencil hardness (2H) and scratch hardness (0.90 kg) | [86] |
Living fungus Aureobasidium pullulans | Improved aesthetic durability | Colour change reduced from 14 to 1 after 12 months of natural exposure | [90] |
Preservative/Impregnator | Properties | Results | Ref |
---|---|---|---|
Tannin extract | Reduced ecotoxicity | IC20 and IC50 of 22 and 145 mg/L, respectively | [91] |
Stilbenes extract | Improved fungal resistance | mass loss (%) reduced below 25 after 16 weeks of incubation with C. puteana, G. trabeum, and R. placenta | [92] |
Tannin extract | Improved fungal resistance | Antifungal activity comparable to that of chromate copper borate preservative | [96] |
Monoterpene carvacrol | Improved fungal resistance | IC50 values against T. hirsuta, S. commune, and P. sanguineus of 87.6, 53.6, and 71.7 mg mL−1, respectively | [99] |
Propolis extract | Improved fungal resistance | Mass loss (%) reduced from 48.8 to 2.7 after incubation with C. puteana | [100] |
Lippia origanoides extract | Improved fungal resistance | Inhibition index of 100 even at low concentrations against G. trabeum | [103] |
Coffee silverskin | Improved fungal resistance | Inhibition coefficient of about 70% against T. versicolor, G. trabeum, and R. placenta | [106] |
Filler/Additive | Properties | Results | Ref |
---|---|---|---|
Olive leaf extract | Improved resistance against natural weathering | Colour change below 15 after 12 months of natural exposure | [109] |
Levulinic acid | Improved resistance against weathering | Colour change below 2 after 168 h of UV exposure | [110] |
Lignin nanoparticles | Improved resistance against weathering | Colour change below 15 after 7 days of UV exposure | [111] |
Tannins extracts | Improved resistance against weathering | Colour change below 35 after 1512 h of UV-A exposure | [112] |
Carnauba wax + ZnO nanoparticles | Reduced wettability and improved weathering resistance | Contact angles above 140° and colour change below 10 after 10 days of UV exposure | [114] |
Colloidal lignin particles | Improved abrasion resistance | Average mass loss/Taber cycle of 106 μg | [115] |
Lignin | Improved mechanical features | Adhesion strength and pencil hardness increase to 1.6 MPa and 2H, respectively | [116] |
Cellulose nanocrystals and lignin | Improved hydrophobicity | Water contact angle increased from 44° to 56° | [117] |
Coffee-derived cinnamates | Increased fungal inhibition | Fungal inhibition of about 72% and 78% against C. puteana and G. trabeum, respectively | [120] |
Essential oil from Pelargonium graveolens | Increased fungal inhibition | 100% fungal inhibition against C. puteana | [121] |
Scots Pine Knotwood | Increased fungal inhibition | Fungal growth inhibition up to 67% against G. trabeum | [123] |
Citric acid oligomer | Increased fungal inhibition | Up to 15 mm associated with the zone of inhibition against S. aureus | [125] |
Polybasic carboxylic acid | Improved flame retardant properties | LOI value up to 30.7 | [129] |
Eggshell and rice husk ash | Improved fire resistance | Peak to heat release rate reduction from 193.2 to 150.3 kW/m2 | [134] |
Montmorillonite | Improved fire resistance | Reduction in the specific extinction area of 44.12 m2 kg−1 | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calovi, M.; Zanardi, A.; Rossi, S. Recent Advances in Bio-Based Wood Protective Systems: A Comprehensive Review. Appl. Sci. 2024, 14, 736. https://doi.org/10.3390/app14020736
Calovi M, Zanardi A, Rossi S. Recent Advances in Bio-Based Wood Protective Systems: A Comprehensive Review. Applied Sciences. 2024; 14(2):736. https://doi.org/10.3390/app14020736
Chicago/Turabian StyleCalovi, Massimo, Alessia Zanardi, and Stefano Rossi. 2024. "Recent Advances in Bio-Based Wood Protective Systems: A Comprehensive Review" Applied Sciences 14, no. 2: 736. https://doi.org/10.3390/app14020736
APA StyleCalovi, M., Zanardi, A., & Rossi, S. (2024). Recent Advances in Bio-Based Wood Protective Systems: A Comprehensive Review. Applied Sciences, 14(2), 736. https://doi.org/10.3390/app14020736