Research Progress on the Microfracture of Shale: Experimental Methods, Microfracture Propagation, Simulations, and Perspectives
Abstract
:1. Introduction
2. In Situ Observation Experiment of Shale Microfractures
3. Research on the Formation and Evolution of Discontinuous Microfractures
3.1. Macroscopic Discontinuous Fractures
3.2. Microscopic Discontinuous Fractures
4. The Impact of Inhomogeneity on Microfracture Propagation
- (1)
- Intergranular fractures and transgranular fractures
- (2)
- Fracture modes of minerals
- (3)
- The influence of mineral geometric morphology and distribution on microfractures
- (4)
- The influence of natural bedding and fractures within shale on microfractures
5. The Measurement Methods for Microscale Mechanical Parameters and Deformation Quantities in Shale
5.1. Measurement of Microscale Mechanical Parameters in Shale
5.2. In Situ Strain Measurement Method for Shale
6. Microscale Fracture Simulation in Shale
7. Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bellani, J.; Verma, H.K.; Khatri, D.; Makwana, D.; Shah, M. Shale gas: A step toward sustainable energy future. J. Pet. Explor. Prod. Technol. 2021, 11, 2127–2141. [Google Scholar] [CrossRef]
- Naumenko-Dèzes, M.; Kloppmann, W.; Blessing, M.; Bondu, R.; Gaucher, E.C.; Mayer, B. Natural gas of radiolytic origin: An overlooked component of shale gas. Proc. Natl. Acad. Sci. USA 2022, 119, e2114720119. [Google Scholar] [CrossRef] [PubMed]
- Whitelaw, P.; Uguna, C.N.; Stevens, L.A.; Meredith, W.; Snape, C.E.; Vane, C.H.; Moss-Hayes, V.; Carr, A.D. Shale gas reserve evaluation by laboratory pyrolysis and gas holding capacity consistent with field data. Nat. Commun. 2019, 10, 3659. [Google Scholar] [CrossRef]
- Curtis, J. Fractured shale-gas systems. Aapg Bull. 2002, 86, 1921–1938. [Google Scholar] [CrossRef]
- Ding, W.; Li, C.; Li, C.; Xu, C.; Jiu, K.; Zeng, W.; Wu, L. Fracture development in shale and its relationship to gas accumulation. Geosci. Front. 2012, 3, 97–105. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Yin, C.; Zhang, Y.; Lin, C. Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale. Energy 2020, 191, 116449. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Zhang, L. Experimental study on the cracking process of layered shale using X-ray microCT. Energy Explor. Exploit. 2017, 36, 297–313. [Google Scholar] [CrossRef]
- Zhou, J.; Zeng, Y.; Guo, Y.; Chang, X.; Liu, L.; Wang, L.; Hou, Z.; Yang, C. Effect of natural filling fracture on the cracking process of shale Brazilian disc containing a central straight notched flaw. J. Pet. Sci. Eng. 2021, 196, 107993. [Google Scholar] [CrossRef]
- Shang, X.; Long, S.; Duan, T. Fracture system in shale gas reservoir: Prospect of characterization and modeling techniques. J. Nat. Gas Geosci. 2021, 6, 157–172. [Google Scholar] [CrossRef]
- Xu, C.; Kang, Y.; You, Z.; Chen, M. Review on formation damage mechanisms and processes in shale gas reservoir: Known and to be known. J. Nat. Gas Sci. Eng. 2016, 36, 1208–1219. [Google Scholar] [CrossRef]
- Zhao, J.; Ren, L.; Jiang, T.; Hu, D.; Wu, L.; Wu, J.; Yin, C.; Li, Y.; Hu, Y.; Lin, R.; et al. Ten years of gas shale fracturing in China: Review and prospect. Nat. Gas Ind. B 2022, 9, 158–175. [Google Scholar] [CrossRef]
- Ougier-Simonin, A.; Renard, F.; Boehm, C.; Vidal-Gilbert, S. Microfracturing and microporosity in shales. Earth-Sci. Rev. 2016, 162, 198–226. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Zhou, X.; Wang, A.; Li, J. Real Gas Effect and Bulk Diffusion Characteristics of Shale Mixed Gas Transport in Microscale Fractures. ACS Omega 2023, 8, 17077–17085. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, W.K.; Zhao, Z.H.; Zhang, D. Anisotropic energy and ultrasonic characteristics of black shale under triaxial deformation revealed utilizing real-time ultrasonic detection and post-test CT imaging. Geophys. J. Int. 2019, 219, 260–270. [Google Scholar] [CrossRef]
- Lan, H.; Martin, C.D.; Hu, B. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. J. Geophys. Res. 2010, 115, 1–20. [Google Scholar] [CrossRef]
- Cheng, Y.; Wong, L.N.Y. Microscopic Characterization of Tensile and Shear Fracturing in Progressive Failure in Marble. J. Geophys. Res. Solid Earth 2018, 123, 204–225. [Google Scholar] [CrossRef]
- Cui, Z.; Han, W. In Situ Scanning Electron Microscope (SEM) Observations of Damage and Crack Growth of Shale. Microsc. Microanal. 2018, 24, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Abedi, S.; Slim, M.; Hofmann, R.; Bryndzia, T.; Ulm, F.-J. Nanochemo-mechanical signature of organic-rich shales: A coupled indentation–EDX analysis. Acta Geotech. 2016, 11, 559–572. [Google Scholar] [CrossRef]
- Deirieh, A.; Ortega, J.A.; Ulm, F.J.; Abousleiman, Y. Nanochemomechanical assessment of shale: A coupled WDS-indentation analysis. Acta Geotech. 2012, 7, 271–295. [Google Scholar] [CrossRef]
- Kumar, V.; Curtis, M.E.; Gupta, N.; Sondergeld, C.H.; Rai, C.S. Estimation of Elastic Properties of Organic Matter and Woodford Shale Through Nano-indentation Measurements. In Proceedings of the SPE Canadian Unconventional Resources Conference, Calgary, AB, Canada, 30 October–1 November 2012. [Google Scholar]
- Ulm, F.-J.; Abousleiman, Y. The Nanogranular Nature of Shale. Acta Geotech. 2006, 1, 77–88. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Liu, L.; Liu, Y.; Ju, M.; Zhao, J. Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. Int. J. Rock Mech. Min. Sci. 2020, 127, 104219. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Z.; Meng, S.; Tang, C.; Tao, J. Numerical Simulation Study of Brittle Rock Materials from Micro to Macro Scales Using Digital Image Processing and Parallel Computing. Appl. Sci. 2022, 12, 3864. [Google Scholar] [CrossRef]
- Xu, H.; Wang, G.; Fan, C.; Liu, X.; Wu, M. Grain-scale reconstruction and simulation of coal mechanical deformation and failure behaviors using combined SEM Digital Rock data and DEM simulator. Powder Technol. 2020, 360, 1305–1320. [Google Scholar] [CrossRef]
- Daigle, H.; Hayman, N.; Kelly, E.; Milliken, K.; Jiang, H. Fracture capture of organic pores in shales: Fracture capture of organic pores. Geophys. Res. Lett. 2017, 44, 2167–2176. [Google Scholar] [CrossRef]
- Fujii, Y.; Takemura, T.; Takahashi, M.; Lin, W. Surface features of uniaxial tensile fractures and their relation to rock anisotropy in Inada granite. Int. J. Rock Mech. Min. Sci. 2007, 44, 98–107. [Google Scholar] [CrossRef]
- Zhong, J.; Liu, S.; Ma, Y.; Yin, C.; Liu, C.; Li, Z.; Liu, X.; Li, Y. Macro-fracture mode and micro-fracture mechanism of shale. Pet. Explor. Dev. 2015, 42, 269–276. [Google Scholar] [CrossRef]
- Zuo, J.; Li, Y.; Liu, C.; Liu, H.; Wang, J.; Li, H.; Liu, L. Meso-fracture mechanism and its fracture toughness analysis of Longmaxi shale including different angles by means of M-SENB tests. Eng. Fract. Mech. 2019, 215, 178–192. [Google Scholar] [CrossRef]
- Zuo, J.; Wang, X.; Mao, D. SEM in-situ study on the effect of offset-notch on basalt cracking behavior under three-point bending load. Eng. Fract. Mech. 2014, 131, 504–513. [Google Scholar] [CrossRef]
- Huang, B.; Li, L.; Tan, Y.; Hu, R.; Li, X. Investigating the Meso-Mechanical Anisotropy and Fracture Surface Roughness of Continental Shale. J. Geophys. Res. Solid Earth 2020, 125, 1–23. [Google Scholar] [CrossRef]
- Li, X.; Duan, Y.; Li, S.; Zhou, R. Study on the progressive failure characteristics of Longmaxi shale under uniaxial compression conditions by X-ray micro-computed tomography. Energies 2017, 10, 303. [Google Scholar] [CrossRef]
- Li, S.; Liu, L.; Chai, P.; Li, X.; He, J.; Zhang, Z.; Wei, L. Imaging hydraulic fractures of shale cores using combined positron emission tomography and computed tomography (PET-CT) imaging technique. J. Pet. Sci. Eng. 2019, 182, 106283. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Zheng, B.; He, J.; Mao, T. Study on the progressive fracturing in soil and rock mixture under uniaxial compression conditions by CT scanning. Eng. Geol. 2020, 279, 105884. [Google Scholar] [CrossRef]
- Cui, Z.; Li, X.; Liu, D. In-situ observation of en echelon intermittent intermittent cracks of shale in micro-nano scale. J. Eng. Geol. 2018, 26, 85–90. [Google Scholar]
- Tang, H. Multi-scale crack propagation and damage acceleration during uniaxial compression of marble. Int. J. Rock Mech. Min. Sci. 2020, 131, 104330. [Google Scholar] [CrossRef]
- Liu, X.; Meng, S.-W.; Liang, Z.; Tang, C.a.; Tao, J.; Tang, J. Microscale crack propagation in shale samples using focused ion beam scanning electron microscopy and three-dimensional numerical modeling. Pet. Sci. 2023, 20, 1488–1512. [Google Scholar] [CrossRef]
- Han, B.; Yang, H. Microscopic fracture process and quantitative study of shale under different confining pressures. Coal Sci. Technol. 2019, 47, 90–95. [Google Scholar]
- Yang, S.; Xu, T.; He, L.; Jing, H.; Wen, S.; Yu, Q.L. Numerical study on failure behavior of brittle rock specimen containing pre-existing combined flaws under different confining pressure. Arch. Civ. Mech. Eng. 2015, 15, 1085–1097. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, Z.; Han, W.; Si, K.; Zhao, Y. Comparative Study on Mineral-Scale Microcrack Propagation of Shale under Different Loading Methods. Adv. Civ. Eng. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Peacock, D.C.P.; Sanderson, D.J. Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta. J. Struct. Geol. 2003, 25, 793–812. [Google Scholar] [CrossRef]
- Lajtai, E.Z.; Carter, B.J.; Duncan, E.J.S. En echelon crack-arrays in potash salt rock. Rock Mech. Rock Eng. 1994, 27, 89–111. [Google Scholar] [CrossRef]
- Siad, L.; Megueddem, M. Stability analysis of jointed rock slope. Mech. Res. Commun. 1998, 25, 661–670. [Google Scholar] [CrossRef]
- Tikoff, B.; Teyssier, C. Formation of en-échelon pull-apart arrays in pure-shear dominated transpression. J. Struct. Geol. 2022, 162, 104675. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Einstein, H.H. Crack Coalescence in Molded Gypsum and Carrara Marble: Part 1. Macroscopic Observations and Interpretation. Rock Mech. Rock Eng. 2009, 42, 475–511. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, P.; Ma, J.; Chen, S. Experimental study on evolution of thermal field of en echelon fault during the meta-instability stage. Chin. J. Geophys. 2013, 56, 2348–2357. [Google Scholar]
- Wang, X.; Ma, J.; Liu, L. Numerical simulation of large shear strain drops during jog failure for echelon faults based on a heterogeneous and strain-softening model. Tectonophysics 2013, 608, 667–684. [Google Scholar] [CrossRef]
- Surowiecki, A.; Saska, P.; Ksiądzyna, K.; Ryczyński, J. Traffic infrastructure in mining areas (selected problems). Sci. J. Mil. Univ. Land Forces 2019, 193, 558–578. [Google Scholar] [CrossRef]
- Fossen, H. Chapter 8-Fault classification, fault growth and displacement. In Regional Geology and Tectonics, 2nd ed.; Scarselli, N., Adam, J., Chiarella, D., Roberts, D.G., Bally, A.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 119–147. [Google Scholar]
- Tóth, E.; Hrabovszki, E.; Tóth, T.M.; Schubert, F. Shear strain and volume change associated with sigmoidal vein arrays in the Boda Claystone. J. Struct. Geol. 2020, 138, 104105. [Google Scholar] [CrossRef]
- Afolagboye, L.O.; He, J.; Wang, S. Crack Initiation and Coalescence Behavior of Two Non-parallel Flaws. Geotech. Geol. Eng. 2018, 36, 105–133. [Google Scholar] [CrossRef]
- Zhang, P.; Li, N.; He, R.L. Experimental Study on Mechanism of Crack Coalescence between Two Pre-Existing Flaws under Dynamic Loading. Key Eng. Mater. 2006, 324–325, 117–120. [Google Scholar] [CrossRef]
- Bi, J.; Tang, J.; Wang, C.; Quan, D.; Teng, M. Crack Coalescence Behavior of Rock-Like Specimens Containing Two Circular Embedded Flaws. Lithosphere 2022, 2022, 9498148. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Wu, S.; Tang, X. Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression. Eng. Geol. 2015, 199, 74–90. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, Z.; Xiao, X.; Li, Z. Crack propagation and coalescence due to dual non-penetrating surface flaws and their effect on the strength of rock-like material. J. Geophys. Eng. 2018, 15, 938–951. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Einstein, H.H. Coalescence Behavior In Carrara Marble And Molded Gypsum Containing Artificial Flaw Pairs Under Uniaxial Compression. In Proceedings of the 1st Canada-U.S. Rock Mechanics Symposium, Vancouver, Canada, 27–31 May 2007; p. ARMA–07-071. [Google Scholar]
- Chen, J.; Lan, H.; Macciotta, R.; Martin, C.D.; Wu, Y. Microfracture characterization of shale constrained by mineralogy and bedding. J. Pet. Sci. Eng. 2021, 201, 108456. [Google Scholar] [CrossRef]
- Lan, H.; Chen, J.; Wu, Y. Spatial characterization of micro and nanoscale micro-cracks in gas shale before and after triaxial compression test. J. Eng. Geol. 2018, 26, 24–35. [Google Scholar]
- Hallbauer, D.K.; Wagner, H.; Cook, N.G.W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1973, 10, 713–726. [Google Scholar] [CrossRef]
- Zeng, W.; Ding, W.; Zhang, J.; Zhang, Y.; Ling, G.; Kai, J.; Li, Y. Fracture development in Paleozoic shale of Chongqing area (South China). Part two: Numerical simulation of tectonic stress field and prediction of fractures distribution. J. Asian Earth Sci. 2013, 75, 267–279. [Google Scholar] [CrossRef]
- Zhou, J.; Lan, H.; Zhang, L.; Yang, D.; Song, J.; Wang, S. Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite. Eng. Geol. 2019, 251, 100–114. [Google Scholar] [CrossRef]
- Slatt, R.; O’Brien, N. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in finegrained rocks. AAPG Bull. 2011, 95, 2017–2030. [Google Scholar] [CrossRef]
- Mahdi, S.; Abbas, T. A numerical approach to investigate the effects of rock texture on the damage and crack propagation of a pre-cracked granite. Comput. Geotech. 2019, 111, 89–111. [Google Scholar] [CrossRef]
- Saadat, M.; Taheri, A. A cohesive grain based model to simulate shear behaviour of rock joints with asperity damage in polycrystalline rock. Comput. Geotech. 2020, 117, 103254. [Google Scholar] [CrossRef]
- Tian, W.; Yang, S.; Xie, L.; Wang, Z. Cracking behavior of three types granite with different grain size containing two non-coplanar fissures under uniaxial compression. Arch. Civ. Mech. Eng. 2018, 18, 1580–1596. [Google Scholar] [CrossRef]
- Han, J.; Zhu, H.; Lu, Y.; Yang, S.; Yang, M.; Shi, E.; Qi, Y. Microstructural Analysis of Organic-Rich Shales: Insights from an Electron Microscopic Study by Application of FIBSEM and TEM. Nanomaterials 2022, 12, 4135. [Google Scholar] [CrossRef]
- Ding, P.; Wang, D.; Gong, F.; Wang, L.; Li, X.-y. Laboratory observation of velocity anisotropy affected by clays and microcracks in artificial clay-rich shale samples. J. Pet. Sci. Eng. 2020, 191, 107156. [Google Scholar] [CrossRef]
- Sui, W.; Wang, Y.; Li, J. Microscopic Study of Shale Anisotropy with SEM In Situ Compression and Three-Point Bending Experiments. Energies 2023, 16, 2440. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Zhao, Z.; Wang, H. Investigation on the effect of confining pressure on the geomechanical and ultrasonic properties of black shale using ultrasonic transmission and post-test CT visualization. J. Pet. Sci. Eng. 2020, 185, 106630. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, B. How does structure affect the evolution of cracking and the failure mode of anisotropic shale? Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 8, 25. [Google Scholar] [CrossRef]
- Li, C.; Xie, H.; Wang, J. Anisotropic characteristics of crack initiation and crack damage thresholds for shale. Int. J. Rock Mech. Min. Sci. 2020, 126, 104178. [Google Scholar] [CrossRef]
- Nasseri, M.H.B.; Mohanty, B. Fracture toughness anisotropy in granitic rocks. Int. J. Rock Mech. Min. Sci. 2008, 45, 167–193. [Google Scholar] [CrossRef]
- Nasseri, M.H.B.; Mohanty, B.; Young, R.P. Fracture Toughness Measurements and Acoustic Emission Activity in Brittle Rocks. Pure Appl. Geophys. 2006, 163, 917–945. [Google Scholar] [CrossRef]
- Cui, Z.; Qi, S.; Han, W. The role of weak bedding planes in the cross-layer crack growth paths of layered rocks. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 22. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M. Microstructural and geomechanical analysis of Bakken shale at nanoscale. J. Pet. Sci. Eng. 2017, 153, 133–144. [Google Scholar] [CrossRef]
- Yang, J.; Hatcherian, J.; Hackley, P.C.; Pomerantz, A.E. Nanoscale geochemical and geomechanical characterization of organic matter in shale. Nat. Commun. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.-Q.; Yang, J.-H.; Liu, J.-S.; Tong, W.-S. Determination of shale macroscale modulus based on microscale measurement: A case study concerning multiscale mechanical characteristics. Pet. Sci. 2022, 19, 1262–1275. [Google Scholar] [CrossRef]
- Kim, H.; Ishibashi, K.; Matsuo, K.; Kira, A.; Okada, T.; Watanabe, K.; Inada, M.; Nakamura, C. Quantitative Measurements of Intercellular Adhesion Strengths between Cancer Cells with Different Malignancies Using Atomic Force Microscopy. Anal Chem 2019, 91, 10557–10563. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Huang, J.; Cui, X.; Tan, X.; Liu, Q.; Zeng, H. Heterogeneous Distribution of Adsorbed Bitumen on Fine Solids from Solvent-Based Extraction of Oil Sands Probed by AFM. Energy Fuels 2017, 31, 8833–8842. [Google Scholar] [CrossRef]
- Xing, Y.; Li, C.; Gui, X.; Cao, Y. Interaction Forces between Paraffin/Stearic Acid and Fresh/Oxidized Coal Particles Measured by Atomic Force Microscopy. Energy Fuels 2017, 31, 3305–3312. [Google Scholar] [CrossRef]
- Bennett, K.C.; Berla, L.A.; Nix, W.D.; Borja, R.I. Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotech. 2015, 10, 1–14. [Google Scholar] [CrossRef]
- Yang, T. Research on micromechanical properties of breccia based on atomic force microscope. Fly Ash Compr. Util. 2022, 36, 29–35. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, G.; Du, X. Characterization of Fracture Process in Shale: Insights From Micro-Scale DIC. In Proceedings of the 55th U.S. Rock Mechanics/Geomechanics Symposium, Virtual, 20–23 June 2021; p. ARMA–2021-1747. [Google Scholar]
- Nath, F.; Aguirre, G.; Aguirre, E. Characterizing Complex Deformation, Damage, and Fracture in Heterogeneous Shale Using 3D-DIC. Energies 2023, 16, 2776. [Google Scholar] [CrossRef]
- Githens, A.; Ganesan, S.; Chen, Z.; Allison, J.; Sundararaghavan, V.; Daly, S. Characterizing microscale deformation mechanisms and macroscopic tensile properties of a high strength magnesium rare-earth alloy: A combined experimental and crystal plasticity approach. Acta Mater. 2020, 186, 77–94. [Google Scholar] [CrossRef]
- Zhang, S.; Godfrey, A.; Zhang, C.; Liu, W.; Juul Jensen, D. Surface patterning for combined digital image correlation and electron backscatter diffraction in-situ deformation experiments. Mater. Charact. 2020, 164, 110332. [Google Scholar] [CrossRef]
- Caduff, D.; Van Mier, J.G.M. Analysis of compressive fracture of three different concretes by means of 3D-digital image correlation and vacuum impregnation. Cem. Concr. Compos. 2010, 32, 281–290. [Google Scholar] [CrossRef]
- Gao, G.; Yao, W.; Xia, K.; Li, Z. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method. Eng. Fract. Mech. 2015, 138, 146–155. [Google Scholar] [CrossRef]
- Roux, S.; Hild, F. Stress intensity factor measurements from digital image correlation: Post-processing and integrated approaches. Int. J. Fract. 2006, 140, 141–157. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, S. Deformation Field around the Stress Induced Crack Area in Sandstone by the Digital Speckle Correlation Method. Acta Geol. Sin. 2009, 83, 661–672. [Google Scholar] [CrossRef]
- Dautriat, J.; Bornert, M.; Gland, N.; Dimanov, A.; Raphanel, J. In-situ analysis of strain localization related to structural heterogeneities of carbonate rocks. EPJ Web Conf. 2010, 6, 1–23. [Google Scholar] [CrossRef]
- Dautriat, J.; Bornert, M.; Gland, N.; Dimanov, A.; Raphanel, J. Localized deformation induced by heterogeneities in porous carbonate analysed by multi-scale digital image correlation. Tectonophysics 2011, 503, 100–116. [Google Scholar] [CrossRef]
- Renard, F.; McBeck, J.; Kandula, N.; Cordonnier, B.; Meakin, P.; Ben-Zion, Y. Volumetric and shear processes in crystalline rock approaching faulting. Proc. Natl. Acad. Sci. USA 2019, 116, 16234–16239. [Google Scholar] [CrossRef]
- Wenk, H.R.; Houtte, P.V. Texture and anisotropy. Rep. Prog. Phys. 2004, 67, 1367. [Google Scholar] [CrossRef]
- Stipp, M.; Stünitz, H.; Heilbronner, R.; Schmid, S.M. The eastern Tonale fault zone: A ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J. Struct. Geol. 2002, 24, 1861–1884. [Google Scholar] [CrossRef]
- Mansouri, H.; Prior, D.J.; Ajalloeian, R.; Elyaszadeh, R. Deformation and recrystallization mechanisms inferred from microstructures of naturally deformed rock salt from the diapiric stem and surface glaciers of a salt diapir in Southern Iran. J. Struct. Geol. 2019, 121, 10–24. [Google Scholar] [CrossRef]
- Belytschko, T.; Black, T. Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 2015, 45, 601–620. [Google Scholar] [CrossRef]
- He, J.; Zhang, Z.; Li, X. Numerical Analysis on the Formation of Fracture Network during the Hydraulic Fracturing of Shale with Pre-Existing Fractures. Energies 2017, 10, 763. [Google Scholar] [CrossRef]
- Nagel, N.; Sanchez-Nagel, M.; Zhang, F.; Garcia, X.; Lee, B. Coupled Numerical Evaluations of the Geomechanical Interactions Between a Hydraulic Fracture Stimulation and a Natural Fracture System in Shale Formations. Rock Mech. Rock Eng. 2013, 46, 581–609. [Google Scholar] [CrossRef]
- Shi, G. Discontinuous Deformation Analysis: A New Numerical Model for the Statics and Dynamics of Deformable Block Structures. Eng. Comput. 1992, 9, 157–168. [Google Scholar] [CrossRef]
- Stolarska, M.; Chopp, D.L.; MoS, N.; Belytschko, T. Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 2001, 51, 943–960. [Google Scholar] [CrossRef]
- Zhou, L. A new numerical 3D-model for simulation of hydraulic fracturing in consideration of hydro-mechanical coupling effects. Int. J. Rock Mech. Min. Sci. 2013, 60, 370–380. [Google Scholar] [CrossRef]
- Gao, F.; Stead, D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. Sci. 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Kazerani, T.; Zhao, J. Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int. J. Numer. Anal. Methods Geomech. 2010, 34, 1877–1895. [Google Scholar] [CrossRef]
- Ghazvinian, E.; Diederichs, M.S.; Quey, R. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. J. Rock Mech. Geotech. Eng. 2014, 6, 506–521. [Google Scholar] [CrossRef]
- Wang, X.; Cai, M. Modeling of brittle rock failure considering inter- and intra-grain contact failures. Comput. Geotech. 2018, 101, 224–244. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Zhao, J. 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock. Comput. Geotech. 2017, 90, 96–112. [Google Scholar] [CrossRef]
- Bewick, R.; Kaiser, P.; Bawden, W. DEM Simulation of Direct Shear: 2. Grain Boundary and Mineral Grain Strength Component Influence on Shear Rupture. Rock Mech. Rock Eng. 2014, 47, 1673–1692. [Google Scholar] [CrossRef]
- Bewick, R.; Kaiser, P.; Bawden, W.; Bahrani, N. DEM Simulation of Direct Shear: 1. Rupture Under Constant Normal Stress Boundary Conditions. Rock Mech. Rock Eng. 2013, 47, 1647–1671. [Google Scholar] [CrossRef]
- Potyondy, D. A grain-based model for rock: Approaching the true microstructure. Itasca 2010, 1, 1–9. [Google Scholar]
- Abdelaziz, A.; Zhao, Q.; Grasselli, G. Grain based modelling of rocks using the combined finite-discrete element method. Comput. Geotech. 2018, 103, 73–81. [Google Scholar] [CrossRef]
- Ji, L.; Lin, M.; Cao, G.; Jiang, W. A core-scale reconstructing method for shale. Sci. Rep. 2019, 9, 4364. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Zhao, J. The role of transgranular capability in grain-based modelling of crystalline rocks. Comput. Geotech. 2019, 110, 161–183. [Google Scholar] [CrossRef]
- Maerten, L. Variation in slip on intersecting normal faults: Implications for paleostress inversion. J. Geophys. Res. 2000, 105, 25553–25565. [Google Scholar] [CrossRef]
- Maerten, L.; Maerten, F. Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: Technique and industry applications. AAPG Bull. 2006, 90, 1201–1226. [Google Scholar] [CrossRef]
- Maerten, L.; Maerten, F.; Lejri, M.; Gillespie, P. Geomechanical paleostress inversion using fracture data. J. Struct. Geol. 2016, 89, 197–213. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.-Y.; Guo, J.-P.; Wu, S.-S.; Yan, C.-Y. Investigation into Macro- and Microcrack Propagation Mechanism of Red Sandstone under Different Confining Pressures Using 3D Numerical Simulation and CT Verification. Geofluids 2021, 2021, 2871687. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Aravand, M.; Sabuncuoglu, B.; Callens, M.G.; Lomov, S.V.; Gorbatikh, L. Full-field strain measurements at the micro-scale in fiber-reinforced composites using digital image correlation. Compos. Struct. 2016, 140, 192–201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cui, Z.; Chen, X.; Li, L. Research Progress on the Microfracture of Shale: Experimental Methods, Microfracture Propagation, Simulations, and Perspectives. Appl. Sci. 2024, 14, 784. https://doi.org/10.3390/app14020784
Zhang J, Cui Z, Chen X, Li L. Research Progress on the Microfracture of Shale: Experimental Methods, Microfracture Propagation, Simulations, and Perspectives. Applied Sciences. 2024; 14(2):784. https://doi.org/10.3390/app14020784
Chicago/Turabian StyleZhang, Jianyong, Zhendong Cui, Xiaopeng Chen, and Longfei Li. 2024. "Research Progress on the Microfracture of Shale: Experimental Methods, Microfracture Propagation, Simulations, and Perspectives" Applied Sciences 14, no. 2: 784. https://doi.org/10.3390/app14020784
APA StyleZhang, J., Cui, Z., Chen, X., & Li, L. (2024). Research Progress on the Microfracture of Shale: Experimental Methods, Microfracture Propagation, Simulations, and Perspectives. Applied Sciences, 14(2), 784. https://doi.org/10.3390/app14020784