Earthquake-Tolerant Energy-Aware Algorithm for WDM Backbone Network
Abstract
:1. Introduction
1.1. Topic Introduction and Research Objectives
1.2. Background
1.3. Related Work
1.3.1. Enhancing the Resilience of WDM Networks against Geographical Failures
1.3.2. Enhancing Energy Efficiency in WDM Backbone Networks
2. Materials and Methods
2.1. Energy Contribution and Seismic Measurements
2.1.1. Energy Contribution
2.1.2. Richter and Gutenberg’s Law
2.2. Operation of the Proposed Algorithm
Algorithm 1: Proposed Algorithm |
Input: |
|
|
|
|
|
Output: bestOutput, originalOutputOfEAFFB |
|
|
|
|
|
|
|
|
|
|
|
|
* (Filter links that can be removed without creating a hole in the grid in case of an earthquake) |
2.3. Simulation Specifications
2.4. Simulation Data
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atanassova, M.I.; Atanasova, T.V. Key Drivers and Main Challenges for Renewable Energy in Telecommunications. In Proceedings of the BdKCSE’2017 International Conference on Big Data, Knowledge and Control Systems Engineering, Sofia, Bulgaria, 7–8 December 2017; pp. 93–100. [Google Scholar]
- Freeman, H.; Elmirghani, J.M.; Despins, C. The President’s Page: IEEE green IcT. IEEE Commun. Mag. 2017, 55, 4–6. [Google Scholar] [CrossRef]
- Vereecken, W.; Heddeghem, W.; Deruyck, M.; Puype, B.; Lannoo, B.; Joseph, W.; Colle, D.; Martens, L.; Demeester, P. Power consumption in telecommunication networks: Overview and reduction strategies. IEEE Commun. Mag. 2011, 49, 62–69. [Google Scholar] [CrossRef]
- Mouftah, H.T. Communication Infrastructures for Cloud Computing; IGI Glob.: Hershey, PA, USA, 2013. [Google Scholar]
- NTT, D. Damage and Restoration Status Regarding the Tohoku–Pacific Ocean Earthquake and Future Prospects; NTT Data: Koto-ku, Japan, 2011. [Google Scholar]
- Beletsioti, G.A.; Papadimitriou, G.I.; Nicopolitidis, P.; Miliou, A.N. Earthquake tolerant energy aware algorithms: A new approach to the design of WDM backbone networks. IEEE Trans. Green Commun. Netw. 2018, 2, 1164–1173. [Google Scholar] [CrossRef]
- Tran, P.N.; Saito, H. Geographical route design of physical networks using earthquake risk information. IEEE Commun. Mag. 2016, 54, 131–137. [Google Scholar] [CrossRef]
- Tran, P.N.; Saito, H. Enhancing physical network robustness against earthquake disasters with additional links. J. Lightw. Technol. 2016, 34, 5226–5238. [Google Scholar] [CrossRef]
- Beletsioti, G.A. Energy Efficient Optical Backbone Networks. Ph.D. Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2020. [Google Scholar]
- Ashraf, M.W.; Idrus, S.M.; Iqbal, F.; Butt, R.A.; Faheem, M. Disaster-resilient optical network survivability: A comprehensive survey. Photonics 2018, 5, 35. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Efrat, A.; Ganjugunte, S.K.; Hay, D.; Sankararaman, S.; Zussman, G. The resilience of WDM networks to probabilistic geographical failures. IEEE/ACM Trans. Netw. 2013, 21, 1525–1538. [Google Scholar] [CrossRef]
- Neumayer, S.; Zussman, G.; Cohen, R.; Modiano, E. Assessing the impact of geographically correlated network failures. In Proceedings of the IEEE Military Communications Conference (MILCOM), San Diego, CA, USA, 16–19 November 2008; pp. 1–6. [Google Scholar]
- Neumayer, S.; Zussman, G.; Cohen, R.; Modiano, E. Assessing the vulnerability of the fiber infrastructure to disasters. IEEE/ACM Trans. Netw. 2011, 19, 1610–1623. [Google Scholar] [CrossRef]
- Agrawal, A.; Sharma, P.; Bhatia, V.; Prakash, S. Survivability improvement against earthquakes in backbone optical networks using actual seismic zone information. arXiv 2017, arXiv:1703.02358. [Google Scholar]
- Róka, R. Performance Analysis of Wavelength Division Multiplexing-based Passive Optical Network Protection Schemes by means of the Network Availability Evaluator. Appl. Sci. 2022, 12, 7911. [Google Scholar] [CrossRef]
- Róka, R.; Fujdiak, R.; Holasova, E.; Kuchar, K.; Orgon, M.; Misurec, J. Protection Schemes in HPON Networks Based on PWFBA Algorithm. Sensors 2022, 22, 9885. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Muhammad, F.; Habib, U.; Khan, Y.; Usman, M. Modeling and minimization of FWM effects in DWDM-based long-haul optical communication systems. Photon. Netw. Commun. 2021, 41, 36–46. [Google Scholar] [CrossRef]
- Róka, R.; Mokráň, M. Performance analysis and selection of wavelength channels based on the FWM effect influence in optical DWDM systems. Simul. Model. Pract. Theory 2022, 118, 102558. [Google Scholar] [CrossRef]
- Ashraf, M.W.; Butt, R.A.; Faheem, M.; Tariq, M.; Munir, A. Disaster-resilient lightpath routing in WDM optical networks. Opt. Quant. Electron. 2022, 54, 159. [Google Scholar] [CrossRef]
- Tapolcai, J.; Hajdú, Z.L.; Pašić, A.; Ho, P.-H.; Rónyai, L. On Network Topology Augmentation for Global Connectivity under Regional Failures. In Proceedings of the IEEE INFOCOM 2021—IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10. [Google Scholar] [CrossRef]
- Muhammad, A.; Monti, P.; Cerutti, I.; Wosinska, L.; Castoldi, P.; Tzanakaki, A. Energy-efficient WDM network planning with dedicated protection resources in sleep mode. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), Miami, FL, USA, 6–10 December 2010; pp. 1–5. [Google Scholar]
- Monti, P.; Muhammad, A.; Cerutti, I.; Cavdar, C.; Wosinska, L.; Castoldi, P.; Tzanakaki, A. Energy-efficient lightpath provisioning in a static WDM network with dedicated path protection. In Proceedings of the IEEE 13th International Conference on Transparent Optical Networks (ICTON), Stockholm, Sweden, 26–30 June 2011; pp. 1–5. [Google Scholar]
- Musumeci, F.; Tornatore, M.; Vizcaino, J.L.; Ye, Y.; Pattavina, A. Energy-efficiency of protected IP-over-WDM networks with sleepmode devices. J. High Speed Netw. 2013, 19, 19–32. [Google Scholar] [CrossRef]
- Sarigiannidis, P.G.; Papadimitriou, G.; Nicopolitidis, P.; Varvarigos, E. Towards power consumption in optical networks: A cognitive prediction-based technique. Int. J. Commun. Syst. 2017, 30, 1–23. [Google Scholar] [CrossRef]
- Melidis, P.; Nicopolitidis, P.; Papadimitriou, G. Dynamic threshold reconfiguration mechanisms for green IP-over-WDM networks. J. Lightw. Technol. 2016, 34, 4354–4363. [Google Scholar] [CrossRef]
- Garg, A.; Metya, S.K.; Singh, G.; Janyani, V.; Aly, M.H.; Abidin, N.H.Z. SMF/FSO integrated dual-rate reliable and energy efficient WDM optical access network for smart and urban communities. Opt. Quantum Electron. 2021, 53, 625. [Google Scholar] [CrossRef]
- Hammadi, A.A.; Nasralla, Z.H. On the Evaluation of Complex Networks Designs for an Energy-Efficient IP/WDM Core Network. Appl. Sci. 2023, 13, 5756. [Google Scholar] [CrossRef]
- Lorincz, J.; Klarin, Z.; Begusic, D. Advances in Improving Energy Efficiency of Fiber–Wireless Access Networks: A Comprehensive Overview. Sensors 2023, 23, 2239. [Google Scholar] [CrossRef]
- Cisco CRS-1 Specification Data Sheet; Cisco: San Jose, CA, USA, 2009; Available online: https://www.cisco.com/ (accessed on 1 January 2023).
- Wavestar O. L. S. 1.6T Product Specification; Alcatel-Lucent: Boulogne-Billancourt, France, 2007; Available online: http//www.alcatellucent.com (accessed on 1 January 2023).
- O. N. S. 15501 Erbium Doped Fiber Amplifier Data Sheet; Cisco: San Jose, CA, USA, 2003; Available online: https://www.cisco.com/ (accessed on 1 January 2023).
- Simmons, J.M. Optical Network Design and Planning; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Amiri, I.S.; Houssien, F.M.A.M.; Rashed, A.N.Z.; Mohammed, A.E.-N.A. Optical Networks Performance Optimization Based on Hybrid Configurations of Optical Fiber Amplifiers and Optical Receivers. J. Opt. Commun. 2019, 1, 1–300. [Google Scholar] [CrossRef]
- Horvath, T.; Radil, J.; Munster, P.; Bao, N.-H. Optical Amplifiers for Access and Passive Optical Networks: A Tutorial. Appl. Sci. 2020, 10, 5912. [Google Scholar] [CrossRef]
- Beletsioti, G.A.; Papadimitriou, G.I.; Nicopolitidis, P. Energy-aware algorithms for IP over WDM optical networks. J. Lightw. Technol. 2016, 34, 2856–2866. [Google Scholar] [CrossRef]
- Earthquake Planning and Protection of Organization of Ministry of Transport infrastructure, and Networks. New Seismic Hazard Zoning Map of Greece. Available online: http://www.oasp.gr/en (accessed on 20 December 2017).
- Shen, G.; Tucker, R.S. Energy-minimized design for IP over WDM networks. J. Opt. Commun. Netw. 2009, 1, 176–186. [Google Scholar] [CrossRef]
- Papazachos, C.; Papaioannou, C. The macroseismic field of the Balkan area. J. Seismol. 1997, 1, 181–201. [Google Scholar] [CrossRef]
- Shebalin, N.V.; Karnik, V.; Hadzievski, D. Atlas of Isoseismal Maps, Part III of the Catalogue of Earthquakes of the Balkan Region; UNESCO: Skopje, Macedonia, 1974. [Google Scholar]
- Papazachos, C.; Papaioannou, C. Further information on the macroseismic field in the Balkan area. J. Seismol. 1998, 2, 363–375. [Google Scholar] [CrossRef]
Regions | Average Repeat Rate (arp) | Earthquake Occurrence Probability (%) |
---|---|---|
1 | 9.16 | 42 |
2 | 32.97 | 14 |
3 | 52.01 | 9 |
4 | 21.84 | 20 |
5 | 39.17 | 12 |
6 | 30.80 | 15 |
7 | 16.68 | 26 |
8 | 44.13 | 11 |
9 | 48.13 | 10 |
10 | 33.91 | 14 |
11 | 20.13 | 22 |
12 | 31.18 | 15 |
13 | 53.10 | 9 |
14 | 31.58 | 15 |
15 | 16.35 | 26 |
16 | 18.49 | 24 |
17 | 107.94 | 5 |
18 | 14.90 | 29 |
19 | 27.78 | 16 |
20 | 57.79 | 8 |
21 | 13.97 | 30 |
22 | 36.25 | 13 |
23 | 51.20 | 9 |
24 | 30.44 | 15 |
25 | 21.22 | 21 |
26 | 28.88 | 16 |
27 | 23.71 | 19 |
28 | 71.80 | 7 |
29 | 98.20 | 5 |
30 | 28.17 | 16 |
31 | 41.64 | 11 |
32 | 27.07 | 17 |
33 | 46.58 | 10 |
34 | 5.38 | 60 |
35 | 13.80 | 30 |
36 | 33.34 | 14 |
Earthquake Occurrence Probability Threshold | Average Traffic (Gb/s) | IP Router Ports | WDM Transponders | EDFAs |
---|---|---|---|---|
20% | 20 | 2648 | 9004 | 30,613 |
40 | 3897 | 13,218 | 30,613 | |
60 | 5191 | 17,656 | 30,613 | |
80 | 6575 | 22,348 | 30,613 | |
100 | 7925 | 26,994 | 30,613 | |
120 | 9200 | 31,428 | 30,613 | |
30% | 20 | 1258 | 2596 | 9356 |
40 | 1876 | 3877 | 9356 | |
60 | 2498 | 5147 | 9356 | |
80 | 3122 | 6463 | 9356 | |
100 | 3730 | 7701 | 9356 | |
120 | 4423 | 9150 | 9356 | |
40% | 20 | 1104 | 2136 | 7348 |
40 | 1646 | 3191 | 7348 | |
60 | 2195 | 4240 | 7348 | |
80 | 2726 | 5277 | 7348 | |
100 | 3290 | 6376 | 7348 | |
120 | 3842 | 7430 | 7348 | |
50% | 20 | 1104 | 2136 | 7348 |
40 | 1639 | 3168 | 7348 | |
60 | 2178 | 4217 | 7348 | |
80 | 2754 | 5333 | 7348 | |
100 | 3306 | 6393 | 7348 | |
120 | 3835 | 7464 | 7348 |
Earthquake Occurrence Probability Threshold | Affected Areas | Critical Links | Chosen Links |
---|---|---|---|
20% | 1 | 279 | 279 |
4 | 125 | 125 | |
7 | 236 | 99 | |
11 | 147 | ||
15 | 99 | ||
16 | 62 | ||
18 | 157 | ||
21 | |||
25 | |||
34 | |||
35 | |||
30% | 1 | 62 | 62 |
21 | |||
34 | |||
35 | |||
40% | 1 | 341 | 341 |
34 | |||
50% | 34 | 341 | 341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noitsis, D.; Beletsioti, G.A.; Valkanis, A.; Kantelis, K.; Papadimitriou, G.; Nicopolitidis, P. Earthquake-Tolerant Energy-Aware Algorithm for WDM Backbone Network. Appl. Sci. 2024, 14, 896. https://doi.org/10.3390/app14020896
Noitsis D, Beletsioti GA, Valkanis A, Kantelis K, Papadimitriou G, Nicopolitidis P. Earthquake-Tolerant Energy-Aware Algorithm for WDM Backbone Network. Applied Sciences. 2024; 14(2):896. https://doi.org/10.3390/app14020896
Chicago/Turabian StyleNoitsis, Dimitrios, Georgia A. Beletsioti, Anastasios Valkanis, Konstantinos Kantelis, Georgios Papadimitriou, and Petros Nicopolitidis. 2024. "Earthquake-Tolerant Energy-Aware Algorithm for WDM Backbone Network" Applied Sciences 14, no. 2: 896. https://doi.org/10.3390/app14020896
APA StyleNoitsis, D., Beletsioti, G. A., Valkanis, A., Kantelis, K., Papadimitriou, G., & Nicopolitidis, P. (2024). Earthquake-Tolerant Energy-Aware Algorithm for WDM Backbone Network. Applied Sciences, 14(2), 896. https://doi.org/10.3390/app14020896